项目名称: 基于非凸目标函数的稀疏学习及其在医疗诊断中的应用

项目编号: No.61273298

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 自动化技术、计算机技术

项目作者: 沈超敏

作者单位: 华东师范大学

项目金额: 80万元

中文摘要: 稀疏学习是一类机器学习方法,它相对于一般机器学习算法,还额外要求问题的解有一定的稀疏性。稀疏学习方法在理论上符合科学基本原则中的简约(parsimony)原则,在实践中已在模式识别、生物数据处理等方面得到广泛应用。但其求解因涉及到0-范数,难度为NP hard。目前的求解方法是在一定条件下(如RIP条件)求其等价(如1-范数)或近似解。本项目将运用稀疏表示、压缩感知和优化等手段,发展出一套新的针对非凸目标函数的稀疏学习的求解算法。其创新在于:将含有0-范数的极值问题转换成等价的矩阵秩的极值问题,然后运用矩阵算法求解;或转换为截断的1-范数的极值问题,采用DC(凸函数之差)规划求解。预计,本项目的结果在解的性质、精度和速度等方面总体而言将优于当前各主要的稀疏学习算法。初步实验表明,该套算法能成功应用于老年痴呆症的关键病情指标分析和病情发展预测。本项目的最终成果将为稀疏学习提供新的思路和途径。

中文关键词: 稀疏学习;非凸函数;医疗诊断;稀疏表示;优化

英文摘要: Sparse learning is a kind of machine learning method, which requires additional property of sparsity for the solution compared with general machine learning methods. In the theoretical aspect, sparse learning follows the principle of parsimony; in the application aspect, it has been widely applied in many fields such as pattern recognition and biomedical data processing. However, since 0-norm is involved, the difficulty for solving the sparse learning problem is NP-hard. The common solution towards this barrier is to solve its equivalent (e.g. 1-norm) solution or approximate solution under certain conditions such as Restricted Isometry Property (RIP). In this proposal, we will use sparse representation, compressed sensing and optimization techniques to develop a novel method for non-convex objective function based sparse learning. Our novelties lie in that the minimization problem with L0-norm is converted into an equivalent matrix rank minimization problem or a truncated L1-norm minimization problem, so that the problem can be solved directly via matrix manuipulation or the difference of convex functions (DC) programming, respectively. It is expected that the algorithms proposed in this proposal will perform better than most major sparse learning algorithms in terms of the properties, accuracy and speed. Prelim

英文关键词: sparse learning;non-convex function;diagnosis;sparse representation;optimization

成为VIP会员查看完整内容
0

相关内容

迁移学习方法在医学图像领域的应用综述
专知会员服务
59+阅读 · 2022年1月6日
【NeurIPS 2021】基于次模优化的规则学习算法框架
专知会员服务
33+阅读 · 2021年11月30日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
46+阅读 · 2021年8月28日
专知会员服务
40+阅读 · 2021年7月24日
专知会员服务
114+阅读 · 2021年1月11日
专知会员服务
84+阅读 · 2020年12月11日
最新《统计机器学习》课程,26页ppt
专知会员服务
80+阅读 · 2020年8月30日
专知会员服务
42+阅读 · 2020年7月29日
图像分割在医学影像中的应用
极市平台
2+阅读 · 2022年2月16日
交替方向乘子法(ADMM)算法原理详解
PaperWeekly
3+阅读 · 2022年1月21日
深度学习与医学图像分析
人工智能前沿讲习班
40+阅读 · 2019年6月8日
基于数据的分布式鲁棒优化算法及其应用【附PPT与视频资料】
人工智能前沿讲习班
26+阅读 · 2018年12月13日
基于LDA的主题模型实践(三)
机器学习深度学习实战原创交流
23+阅读 · 2015年10月12日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
16+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Risk and optimal policies in bandit experiments
Arxiv
0+阅读 · 2022年4月18日
Arxiv
15+阅读 · 2021年2月19日
Arxiv
10+阅读 · 2020年11月26日
小贴士
相关VIP内容
迁移学习方法在医学图像领域的应用综述
专知会员服务
59+阅读 · 2022年1月6日
【NeurIPS 2021】基于次模优化的规则学习算法框架
专知会员服务
33+阅读 · 2021年11月30日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
46+阅读 · 2021年8月28日
专知会员服务
40+阅读 · 2021年7月24日
专知会员服务
114+阅读 · 2021年1月11日
专知会员服务
84+阅读 · 2020年12月11日
最新《统计机器学习》课程,26页ppt
专知会员服务
80+阅读 · 2020年8月30日
专知会员服务
42+阅读 · 2020年7月29日
相关资讯
图像分割在医学影像中的应用
极市平台
2+阅读 · 2022年2月16日
交替方向乘子法(ADMM)算法原理详解
PaperWeekly
3+阅读 · 2022年1月21日
深度学习与医学图像分析
人工智能前沿讲习班
40+阅读 · 2019年6月8日
基于数据的分布式鲁棒优化算法及其应用【附PPT与视频资料】
人工智能前沿讲习班
26+阅读 · 2018年12月13日
基于LDA的主题模型实践(三)
机器学习深度学习实战原创交流
23+阅读 · 2015年10月12日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
16+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员