项目名称: 若干多尺度流动问题的理论分析与数值模拟
项目编号: No.91230102
项目类型: 重大研究计划
立项/批准年度: 2013
项目学科: 数理科学和化学
项目作者: 王亚光
作者单位: 上海交通大学
项目金额: 70万元
中文摘要: 很多复杂流动具有多尺度因素,流动性态取决于多尺度因素的作用。本课题将研究高雷诺数流体在边界附近的流动和多相流在固壁附近的流动这两种典型的多尺度问题和算法设计。对高雷诺数绕流,探讨流动中边界层的性态,分析边界层中密度、温度的变化;建立边界层渐近性态的数学理论和稳定性分析;为边界层的数值模拟提供理论根据。其次对多相流在固壁上的流动,研究移动接触线的数学理论和有效算法。对在一般表面运动的两个不混溶流体,分析粘性边界层和界面层的相互作用,分析分界面运动、接触角(线)的性态,建立接触线运动问题的数学理论;研究周期结构粗糙固壁上接触线运动的渐近行为和均匀化分析;分析结果将对发展移动接触线相场模拟的高效算法提供依据。我们还将分析算法的稳定性与收敛性,建立两相流移动接触线相场模拟的数学理论。此研究将发展流体力学方程组的数学理论和方法,为流体力学理论的应用研究提供有用的数学工具。
中文关键词: Prandtl边界层;高维接触间断;稳定性分析;多相流;移动接触线
英文摘要: The study of multi-scale phenomena in complex flow motion is of great importance in many applications. The global behavior of the flow motion is affected by the properties at different scales. In this project, we study two classical multi-scale problems: the high Reynolds number boundary layer problem and the two-phase fluid-solid interface problem. We will study the behavior of the high Reynolds number boundary layer by multi-scale analysis. The results will provide some guidance for the development of the efficient numerical scheme for the high Reynolds flow. We shall also study the mathematical theory of the problem of the moving contact lines in multiphase flow, and develop efficient algorithms for the numerical simulation of the problems. For the two immiscible fluids moving on a general solid surface, we shall study the motion of the interface, the behavior of the contact angle (contact line), and establish a systematical mathematical theory of the moving contact line problem by investigating the interaction of the viscous boundary layer and the interface layer in the vicinity of the contact line. For the multiphase flow on a rough surface with periodic structure, we are going to study the asymptotic behavior by homogenization and to derive an effective boundary condition. We shall also develop the effici
英文关键词: Prandtl boundary layers;multi-dimensional contact discontinuities;stability analysis;multi-phase flows;moving contact lines