项目名称: 红平红球菌二苯并噻吩脱硫“4S”途径的转录调控研究

项目编号: No.31500086

项目类型: 青年科学基金项目

立项/批准年度: 2016

项目学科: 生物科学

项目作者: 王丽娟

作者单位: 山东理工大学

项目金额: 20万元

中文摘要: 化石燃料中的含硫化合物燃烧产生大量的硫氧化物,造成酸雨,直接危害人体健康和破坏生态环境。生物脱硫实现燃料的清洁化生产具有极为重要的意义。专一性破坏二苯并噻吩中C-S键的“4S”途径及其中的脱硫基因簇dszABC、脱硫酶的理化性质等都已阐明,但是转录调控方面的研究却开展得很少。本项目以高效脱硫菌——红平红球菌XP为研究对象,拟通过5'RACE系统验证脱硫基因簇dszABC的转录起始位点,鉴定启动子区,利用DNase I足迹技术鉴定顺式调控元件;利用DNA affinity pull-down实验结合菌株XP的基因组信息,全面筛选转录调控因子;并利用凝胶阻滞实验研究顺式调控元件和转录调控因子的相互作用,揭示“4S”途径中脱硫基因簇dszABC的转录调控机理。该研究有助于我们更加全面深入的理解脱硫“4S”途径,为生物脱硫技术广泛应用提供新的认识和实验依据。

中文关键词: 红平红球菌;生物脱硫;“4S”途径;脱硫基因簇dszABC;转录调控

英文摘要: Sulfur oxides released from sulfur-containing fossil fuels combustion contribute to acid rain, which causes harm to human health and environmental pollution. Development of deep desulfurization to produce cleaner fuels using biodesulfurization is of great significance. Sulfur-specific “4S” pathway for DBT desulfurization and its genetic and biochemical mechanisms have been documented in detail; however, the regulatory mechanism has not been reported. In this project, using Rhodococcus erythropolis XP as the research object, we plan to confirm the transcription start site of gene cluster dszABC by 5’RACE, the promoter region and to identify its cis-regulatory elements using DNase I footprinting. With the combination of DNA affinity pull-down and genome analysis of R. erythropolis XP, we will identify the transcriptional regulatory factors, and study their functions by constructing gene disruption mutants. We further investigate the interactions between the cis-regulatory elements and regulatory factors, using electrophoretic mobility shift assay, to reveal the regulatory mechanism of “4S” pathway for DBT desulfurization. The research will help us to a more comprehensive and in-depth understanding of the “4S” pathway for DBT desulfurization and provide new knowledge and experimental references for the wide application of biodesulfurization.

英文关键词: Rhodococcus erythropolis;biodesulfurization;4S pathway;dszABC for biodesulfurization;transcriptional regulation

成为VIP会员查看完整内容
0

相关内容

《5G 毫米波赋能 8K 视频制作》未来移动通信论坛
专知会员服务
11+阅读 · 2022年4月15日
电力人工智能发展报告
专知会员服务
76+阅读 · 2022年4月11日
ICLR2022 | OntoProtein:融入基因本体知识的蛋白质预训练
专知会员服务
28+阅读 · 2022年2月20日
专知会员服务
36+阅读 · 2021年4月23日
专知会员服务
109+阅读 · 2021年4月7日
Science:脂肪细胞外泌体对巨噬细胞发挥调节功能
外泌体之家
19+阅读 · 2019年3月7日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
46+阅读 · 2021年10月4日
小贴士
相关主题
相关VIP内容
《5G 毫米波赋能 8K 视频制作》未来移动通信论坛
专知会员服务
11+阅读 · 2022年4月15日
电力人工智能发展报告
专知会员服务
76+阅读 · 2022年4月11日
ICLR2022 | OntoProtein:融入基因本体知识的蛋白质预训练
专知会员服务
28+阅读 · 2022年2月20日
专知会员服务
36+阅读 · 2021年4月23日
专知会员服务
109+阅读 · 2021年4月7日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员