项目名称: SPS烧结制备硫属纳米晶玻璃及光电性能研究

项目编号: No.51272042

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 一般工业技术

项目作者: 江莞

作者单位: 东华大学

项目金额: 80万元

中文摘要: 硫属半导体化合物量子点具有优异的发光性能,并且可以通过改变量子点的尺寸来和化学组成进行调控,可以使其荧光发射波长覆盖整个可见光区。尽管量子点性能优异,但是量子点化学稳定性低,所以阻碍了量子点的应用。玻璃因其具有透明、化学惰性、易加工等特点,是量子点理想的基体材料。通常量子点玻璃的制备需要高温熔融急冷,然后长时间退火制备,会导致量子点的挥发和分解,其含量和分布难以控制。 本课题提出了采用湿化学方法合成硫属量子点QDs/SiO2核壳复合粉体,利用放电等离子体烧结(SPS)技术低温快速烧结制备量子点玻璃。这种方法可以有效避免目前量子点玻璃制备方法中存在的问题,能够精确控制量子点的成分与分布状态,预期获得具有优异性能的量子点玻璃,为块体量子点玻璃的制备提供一种新的途径。

中文关键词: 硫属纳米晶;玻璃;放电等离子体烧结;光电性能;

英文摘要: Metal chalcogenides nanocrystalline exhibits excellent photoluminescence (PL) properties, and moreover, the wavelength can be changed by tailoring size and composition of QDs. Though QDs possess good properties, the stability of QDs is unsatisfactory, which obstructs QDs application process. Galss is transparent, chemical inert and Machinable, thus it is a perfect parent materials for QDs. Usually, QDs/glass is prepared by a melting process, i.e. by mixing oxide precursors and melting them at high temperature for extended durations followed by quenching the melt. The QDs are nucleated in the molten glass and the subsequent nascent cluster growth can be controlled through regulated annealing cycles.Such processing concept can hardly be applied for most QDs when the volatilization tendency can not be avoided during high-temperature melting. In this project, a novel approach to preparing QDs/glass is proposed. At Firstly, the QDs/SiO2 powders are synthesized by chemical method, and then as-prepared QDs/SiO2 was sintered using Spark Plasma Sintering(SPS) rapidly. Considering above-mentioned, it becomes obvious that the researching results of this project will brings forth the twin benefits of quantum dot glass and other bulk glass.

英文关键词: metal chalcogenides nnanocrystalline;glass;Spark Plasma Sintering;photoelectric properties;

成为VIP会员查看完整内容
0

相关内容

专知会员服务
46+阅读 · 2021年10月10日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
25+阅读 · 2021年4月2日
电子科大最新《深度半监督学习》综述论文,24页pdf
专知会员服务
88+阅读 · 2021年3月6日
专知会员服务
51+阅读 · 2020年12月28日
【TAMU】最新《时间序列分析》课程笔记,527页pdf
专知会员服务
179+阅读 · 2020年9月12日
【ACM MM2020】跨模态分布匹配的半监督多模态情感识别
专知会员服务
42+阅读 · 2020年9月8日
流程工业数字孪生关键技术探讨
专知
1+阅读 · 2021年4月7日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月17日
Synthesizing Informative Training Samples with GAN
Arxiv
0+阅读 · 2022年4月15日
小贴士
相关主题
相关VIP内容
专知会员服务
46+阅读 · 2021年10月10日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
25+阅读 · 2021年4月2日
电子科大最新《深度半监督学习》综述论文,24页pdf
专知会员服务
88+阅读 · 2021年3月6日
专知会员服务
51+阅读 · 2020年12月28日
【TAMU】最新《时间序列分析》课程笔记,527页pdf
专知会员服务
179+阅读 · 2020年9月12日
【ACM MM2020】跨模态分布匹配的半监督多模态情感识别
专知会员服务
42+阅读 · 2020年9月8日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员