项目名称: 基于双稳态纳米粒子的静电自组装超晶格的制备与性能研究

项目编号: No.21303273

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 数理科学和化学

项目作者: 王大为

作者单位: 中山大学

项目金额: 25万元

中文摘要: 纳米粒子的静电自组装是一种高效构建功能性体系或规整超结构的通用方法,至今已获长足发展。但在带同种电荷纳米粒子的静电自组装方面,尤其在不借助交联剂、模板或间隔分子的条件下制备带同种电荷纳米粒子的静电自组装超晶格,仍然具有极大的挑战性。对此,本项目提出一种新思路,通过合理设计配体分子结构、纳米粒子尺寸及实验条件,可在纳米粒子之间引入氢键作用,并可精确调控静电作用、范德华作用、氢键作用之间的微妙平衡,从而在纳米粒子之间形成化学势垒,使纳米粒子具有双稳态;然后优化实验条件,制备尺寸可控的纳米粒子无规团聚体,经熟化过程,使团聚中纳米粒子在势垒约束下发生重排,生成自组装超晶格。本项目将建立理论模型,研究双稳态纳米粒子静电自组装过程中的各种相互作用及化学势垒的变化规律,揭示超晶格的形成机理。本项目还将研究该超晶格的结构特性与物理化学性能,并探讨其在高效化学传感器方面的应用。

中文关键词: 纳米颗粒;金属-有机框架;催化;纳米反应器;传感器

英文摘要: Electrostatic self-assembly of nanoparticles (NPs) has been employed as an efficient and versatile approach towards functional system and order superstructures. While great progress has been made, the electrostatic self-assembly of like-charged NPs into superlattice is still quite challenging, particularly in the case of electrostatic assembly without linker, template or spacer molecule. Here, we propose a new approach. By delicate control over the ligand structure, NP size and experimental conditions, interpartcle hydrogen bonding is introduced and the subtle balance between electrostatic interactions, van der Waals interactions and hydrogen bonding can be finely tailored. The overall interparticle interaction features a high potential energy, which enables the bistability of NPs. These bistable NPs form disorder aggregates with controlled size under optimized experimental conditions. Confined by the potential barrier, NPs within the aggregates rearrange into self-assembled superlattices after further inbubation. Theoretical model will be developed to quantify the interactions and potential barrier between NPs and to rationalize the formation of NP superlattices. The structure and physicochemical properties of the as-prepared NP superlattices, as well their applications in chemical sensing, will also be studie

英文关键词: metal-organic framework;nanoparticle;catalysis;nanoreactor;sensor

成为VIP会员查看完整内容
0

相关内容

专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
103+阅读 · 2021年4月7日
专知会员服务
21+阅读 · 2021年3月25日
Science:量子计算机成功创造时间晶体
学术头条
0+阅读 · 2021年11月20日
流程工业数字孪生关键技术探讨
专知
1+阅读 · 2021年4月7日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
20+阅读 · 2021年9月21日
Arxiv
24+阅读 · 2021年6月25日
Arxiv
27+阅读 · 2018年4月12日
小贴士
相关资讯
Science:量子计算机成功创造时间晶体
学术头条
0+阅读 · 2021年11月20日
流程工业数字孪生关键技术探讨
专知
1+阅读 · 2021年4月7日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员