There currently are two main approaches to reproducing visual appearance using Machine Learning (ML): The first is training models that generalize over different instances of a problem, e.g., different images from a dataset. Such models learn priors over the data corpus and use this knowledge to provide fast inference with little input, often as a one-shot operation. However, this generality comes at the cost of fidelity, as such methods often struggle to achieve the final quality required. The second approach does not train a model that generalizes across the data, but overfits to a single instance of a problem, e.g., a flash image of a material. This produces detailed and high-quality results, but requires time-consuming training and is, as mere non-linear function fitting, unable to exploit previous experience. Techniques such as fine-tuning or auto-decoders combine both approaches but are sequential and rely on per-exemplar optimization. We suggest to combine both techniques end-to-end using meta-learning: We over-fit onto a single problem instance in an inner loop, while also learning how to do so efficiently in an outer-loop that builds intuition over many optimization runs. We demonstrate this concept to be versatile and efficient, applying it to RGB textures, Bi-directional Reflectance Distribution Functions (BRDFs), or Spatially-varying BRDFs (svBRDFs).
翻译:目前,利用机器学习(ML)复制视觉外观有两种主要的方法:一种是培训模式,对问题的不同实例进行概括,例如来自数据集的不同图像。这些模式在数据资料库中学习先行,并使用这种知识提供快速推论,而输入很少,通常是一次性操作。然而,这种一般做法是以忠诚为代价的,因为这种方法往往难以达到所要求的最终质量。第二种方法不训练一种在数据中概括、但过分适应问题单一实例的模式,例如材料的闪光图像。这产生详细和高质量的结果,但需要时间性培训,而且作为简单的非线性功能,无法利用以往的经验。微调或自动解析技术结合两种方法,但又依次并依靠每个外观的优化。我们建议用元学习来将两种技术的端对端与端结合起来:我们过度适应一个单一的问题实例,例如材料的闪光图像。这会产生详细而高质量的结果,但需要花费大量时间的培训,而且只是作为非线性功能的匹配,无法利用以前的经验。一些技术,例如微调或自动解技术,但都是按顺序进行。我们建议使用元学习在内部循环中,将一个单一的问题实例中,然后再分析,再分析,然后在外观中学习如何将它进行。