项目名称: 基于演化博弈的智能电网供需动态耦合优化及政策分析
项目编号: No.71473108
项目类型: 面上项目
立项/批准年度: 2015
项目学科: 管理科学
项目作者: 孙梅
作者单位: 江苏大学
项目金额: 62万元
中文摘要: 智能电网是电力行业在全球能源、环境、经济、技术等诸多因素的共同驱动下形成的一个整体解决方案,而智能电网供需优化是智能电网的一个重要研究热点。本项目基于演化博弈理论,融合复杂系统理论、网络优化理论,计算实验方法,通过理论建模、计算机系统再现、实证分析和对策研究,系统梳理智能电网供需理论和方法体系;分析我国电网中各利益主体之间的相互依赖、相互影响、相互作用及其和外部环境的关联机制;建立智能电网供需耦合动态优化网络模型;研究在改变约束条件参数特别是政策约束、实时动态电价等多种情景下的供、需最优解的变化情况,寻求符合我国特色的最有效的供应企业竞价机制、需求响应方式、实时电价形式,提出完善电价形成机制应采取的优化策略和政策选择。为决策者制定智能电网供需政策提供坚实的理论基础与科学依据,并为检验或评价政策的有效性提供模拟工具。
中文关键词: 智能电网;演化博弈;竞价机制;需求响应;实时电价
英文摘要: Smart grid is the overall solution of the electricity industry under the drive of energy, environment, economics, technology, etc. The supply and demand optimization is one of the focuses in researching of smart grid. Based on evolutionary game theory and the integration of the complex systems theory, network optimization theory and the computational experiment methods, this project analyzes the theory and methodology of the smart grid supply-demand network systematically through theoretical modeling,the computer system representation, the positive analysis and strategy research. Analysis interdependent and interaction relation among the interest subjects of smart grid, and identify the mechanism linking with external circumstances. Establish the model of the supply-demand dynamic coupling optimization of smart grid.This project also studies on different situations of network optimal solution while changing the constraints parameters, especially constraints in policy, real-price as well as other various scenarios, to seek the most effective bidding mechanism of supply enterprises, demand respond pattern and real-time price form with Chinese characteristics. Optimization strategy and policy choice are presented to improve the price formation mechanism. Solid theoretical foundation and scientific basis are provided for the supply-demand policy-maker of smart grid. A simulation tool is given to inspect and evaluate the effectiveness of the policy.
英文关键词: Smart grid;Evolutionary game;Bidding mechanism;Demand response;Real-time price