项目名称: 原位剩余污泥减量的多孔载体生物膜时空演化规律研究
项目编号: No.51278093
项目类型: 面上项目
立项/批准年度: 2013
项目学科: 建筑科学
项目作者: 林山杉
作者单位: 东北师范大学
项目金额: 80万元
中文摘要: 剩余污泥中含有各类污染物质及治病微生物,如不进行有效的处理直接排放到环境中,将对空气、地表水、土壤和地下水造成严重污染。原位剩余污泥减量,即在污水生物处理过程中,降低剩余微生物的净增长速率。以剩余污泥原位降解的污水处理工艺核心-多孔载体CSGA表面生物膜和孔隙内膜为研究对象,对表达其物化、生物特性指标(厚度,pH,胞外多聚物;生物相,微生物多样性,优势种群,生物量,生物活性)以及水质指标,在反应器运行的不同时间、不同部位进行原位实时检测;并根据检测结果构建相关的数学模型,实施统计学计算与相关性分析,以阐明生物膜形成、动态平衡、衰亡脱落及分解机制,确立载体生物膜功能性指标及其与环境因素的相互关系,揭示该工艺原位剩余污泥减量机理。本项目的研究将为解析固着式载体生物膜上不同类型微生物的相互作用及其与剩余污泥原位减量的相关性,推导工艺设计参数理论计算公式,原有工艺改进及新型工艺开发,奠定理论基础.
中文关键词: 原位剩余污泥减量;多孔载体;生物膜特性指标;时空演化规律;回归支持向量机
英文摘要: Excess sludge produced within the wastewater treatment processes is creating environmental challenges such as air, surface water, soil and grounder water pollutions due to much more viruses lived in the untreated excess microbes. In situ excess biomass decrement, removal of more organic loading by enriching the activated biomass and meanwhile reducing the production of excess biomass, is becoming the ultimate goal of the innovative wastewater treatment techniques eager to achieved. The gravel contact oxidation reactor filled with crushed stone globular aggregates (CSGA) as carriers, has been demonstrated capable of reducing the excess sludge effectively in some pilot engineering studies. In order to evaluate the variation and structure of the microbial community survived in the biofilm of CSGA and their functions to excess sludge reduction in CSGA, some biological indexes in the biofilm of CSGA and water indexes in reactor will be sensed in several moments and places during the CSGA reactor running. These biological indexes are composed of biofilm's thickness, pH, extracellular polymeric substances (EPS), biofacies, microbial diversity, dominated microbial community, biomass and microbial activity. The data of the experiment will be analyzed with correlations for determining those biological, physical and chemic
英文关键词: excess sludge in situ reduction;crushed stone globular aggregates;chemical and biological characters of biofilm;variation in different moment and place;support vector regression