We propose a novel low-rank initialization framework for training low-rank deep neural networks -- networks where the weight parameters are re-parameterized by products of two low-rank matrices. The most successful prior existing approach, spectral initialization, draws a sample from the initialization distribution for the full-rank setting and then optimally approximates the full-rank initialization parameters in the Frobenius norm with a pair of low-rank initialization matrices via singular value decomposition. Our method is inspired by the insight that approximating the function corresponding to each layer is more important than approximating the parameter values. We provably demonstrate that there is a significant gap between these two approaches for ReLU networks, particularly as the desired rank of the approximating weights decreases, or as the dimension of the inputs to the layer increases (the latter point holds when the network width is super-linear in dimension). Along the way, we provide the first provably efficient algorithm for solving the ReLU low-rank approximation problem for fixed parameter rank $r$ -- previously, it was unknown that the problem was computationally tractable to solve even for rank $1$. We also provide a practical algorithm to solve this problem which is no more expensive than the existing spectral initialization approach, and validate our theory by training ResNet and EfficientNet models (He et al., 2016; Tan & Le, 2019) on ImageNet (Russakovsky et al., 2015).


翻译:我们提出一个新的低级别初始化框架,用于培训低级别深神经网络 -- -- 其重量参数由两个低级别矩阵产品重新校准的网络。最成功的现有方法是光谱初始化,从全级设置的初始化分布中抽取样本,然后以最佳的方式将Frobenius规范的全级初始化参数与一对通过单值分解的低级别初始化矩阵相匹配。我们的方法受到以下认识的启发:接近与每个层相对应的网络功能比相对应的参数值相近更为重要。我们可以肯定地证明,这两种方法在RELU网络中存在巨大的差距,特别是由于理想的相近性重量级分布在全级设置中,或者随着对层增加的投入的层面(当网络宽度在维度上为超线性值时,后一个点会维持着) 。我们提供了第一个非常有效的算法算法算法,用于解决2015年标值的RELU低级别近似问题 -- -- 此前,我们不知道这两种方法在ReLU网络网络网络网络网络网络网络网络网络网络网络上存在很大的差距上存在很大差距, 。我们最初的理论也无法算算出一个比现在更可解决的平级的平级的平级的平级。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年7月8日
Arxiv
13+阅读 · 2021年3月29日
Arxiv
21+阅读 · 2021年2月13日
VIP会员
相关资讯
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员