We propose value retrieval with arbitrary queries for form-like documents to reduce human effort of processing forms. Unlike previous methods that only address a fixed set of field items, our method predicts target value for an arbitrary query based on the understanding of the layout and semantics of a form. To further boost model performance, we propose a simple document language modeling (SimpleDLM) strategy to improve document understanding on large-scale model pre-training. Experimental results show that our method outperforms previous designs significantly and the SimpleDLM further improves our performance on value retrieval by around 17% F1 score compared with the state-of-the-art pre-training method. Code is available at https://github.com/salesforce/QVR-SimpleDLM.
翻译:我们建议对类似表格的文件进行任意检索,并随意查询其价值,以减少人的处理表格。与以前只处理一套固定的实地项目的方法不同,我们的方法根据对表格的布局和语义的理解,预测了任意查询的目标值。为了进一步提高模型性能,我们提议了一个简单的文件语言模型(SproduDLM)战略,以提高对大规模模型培训前文件的理解。实验结果表明,我们的方法大大优于以前的设计,简单DLM使我们的数值检索业绩比最先进的培训前方法提高了约17%的F1分。代码可在https://github.com/salesforce/QVR-SproDLM查阅。