项目名称: 用于高密度、快速相变存储器的纳米复合多层相变薄膜研究
项目编号: No.61474083
项目类型: 面上项目
立项/批准年度: 2015
项目学科: 无线电电子学、电信技术
项目作者: 翟继卫
作者单位: 同济大学
项目金额: 84万元
中文摘要: 相变存储器(PCRAM)以其独有的特点,被认为是下一代最有潜力的非挥发性存储器。随着研究的不断深入,相变存储技术取得了重要进展,但仍然面临着诸多需要解决的问题。例如:目前PCRAM存储单元的功耗过高;单一相变材料难以同时具有快的相变速度和良好的热稳定性;PCRAM器件的存储密度还有进一步提升空间。本研究针对目前PCRAM存在的问题,采用在纳米尺度上相变薄膜材料2-2复合的方式,在保持原有相变特性的同时,通过两种或两种以上不同电阻率和晶化温度等的相变材料之间性能上的取长补短,弥补单一材料性能的不足,从而提升器件的综合性能,更加适合相变存储器的应用要求。通过在多层复合薄膜中引入独特的多态方式以增加其存储密度,同时保持复合薄膜快相变速度的特点,提高其存储密度和相变速度,经过优化组合的复合多层相变薄膜材料将被应用在PCRAM器件中进行系统性性能表征和评估,并形成具有独立知识产权的材料体系。
中文关键词: 相变存储材料;微纳结构;热稳定性;相变速度;多态存储
英文摘要: Phase change random access memory (PCRAM) has been regarded as one of the most promising candidates for the next-generation nonvolatile memory. However several problems still remain to be solved. For example, the power consumption of PCRAM needs to be reduced. Common phase change material can not offer both fast phase change speed and high thermal stability. There is also high demand to improve the storage density of PCRAM. To target the above problems, this study will introduce phase transition film in 2-2-model nanocomposite configuration, which will maintain the original characteristics of the phase-change material. With two or even more than two types of phase-change materials and dielectric materials, this composite approach can overcome the deficiency of single material properties and improve the comprehensive properties of cells, and fit requirements of the application of the PCRAM. Adopting polymorphism in multilayer phase-change films enables its memory density increment, meanwhile it keeps the high speed of phase-change property. It also increases the memory speed of phase-change. Finally, the implementation of the nanocomposite multilayer phase-change films for high-speed and high density phase-change materials into PCRAM cells will be systematically evaluated. The goal is to achieve materials with good quality and devices with high performance, which have independent intellectual property rights.
英文关键词: phase change memory;the micro and nano structure;thermal stability;phase change speed;multi-state storage