AI芯片发展现状及前景分析

2021 年 5 月 2 日 专知

引言

 
随着深度学习领域 [1-4] 带来的技术性突破,人工智能(artificial intelligence,AI)无论在科研还是在产业应用方面都取得了快速的发展。深度学习算法需要大量的矩阵乘加运算,对大规模并行计算能力有很高的要求,CPU和传统计算架构无法满足对于并行计算能力的需求 [5] ,需要特殊定制的芯片。目前,AI芯片行业已经起步并且发展迅速 [6]


1. AI芯片定义及技术架构


1.1 AI芯片定义

广义上所有面向AI应用的芯片都可以称为AI芯片。目前一般认为是针对AI算法做了特殊加速设计的芯片。现阶段,这些人工智能算法一般以深度学习算法为主,也可以包括其他浅层机器学习算法 [7-8]

1.2 AI芯片功能

(1)训练。对大量的数据在平台上进行学习,并形成具备特定功能的神经网络模型。对AI芯片有高算力、高容量和访问速率、高传输速率、通用性的要求。

(2)推理。利用已经训练好的模型通过计算对输入的数据得到各种结论。对于 AI芯片主要注重算力功耗比、时延、价格成本的综合能力。实验证明低精度运算(如float16,int8)可达到几乎和float32同等的推理效果,所以AI推理芯片有低精度算力的要求。

1.3 技术架构

表1列出了AI芯片的几种技术架构,并对其优缺点进行比较。

表1.AI芯片技术架构

2. AI芯片应用场景


2.1 数据中心(IDC)

用于云端训练和推理,目前大多数的训练工作都在云端完成[9]。移动互联网的视频内容审核、个性化推荐等都是典型的云端推理应用。Nvidia GPU在训练方面一家独大,在推理方面也保持领军位置。FPGA和ASIC因为低功耗、低成本的优势,在持续抢夺GPU的市场的份额。

云端主要的代表芯片有Nvidia-TESLA V100、华为昇腾910、Nvidia-TESLA T4、寒武纪MLU270等。

2.2 移动终端

主要用于移动端的推理,解决云端推理因网络延迟带来的用户体验等问题。典型应用如视频特效、语音助手等。通过在手机系统芯片(system on chip,SoC)中加入增加协处理器或专用加速单元来实现。受制于手机电量,对芯片的功耗有严格的限制。代表芯片有Apple A12 Neural Engine(加速引擎)和华为麒麟990。

2.3 安防

目前最为明确的AI芯片应用场景,主要任务是视频结构化。摄像头终端加入AI芯片,可以实现实时响应、降低带宽压力。也可以将推理功能集成在边缘的服务器级产品中。AI芯片要有视频处理和解码能力。主要考虑的是可处理的视频路数以及单路视频结构化的成本[10]。代表芯片有华为Hi3559-AV100和比特大陆BM1684等。

2.4 自动驾驶

AI芯片作为无人车的大脑,需要对汽车上大量传感器产生的数据做实时处理[11],对芯片的算力、功耗、可靠性都有非常高的要求,同时芯片需要满足车规标准,因此设计的难度较大[12]。面向自动驾驶的芯片目前主要有Nvidia Orin、Xavier和Tesla的FSD等。

2.5 智能家居

在AI+IoT时代,智能家居中的每个设备都需要具备一定的感知、推断以及决策功能。为了得到更好的智能语音交互用户体验,语音AI芯片进入了端侧市场。语音AI芯片相对来说设计难度低,开发周期短。代表芯片有思必驰TH1520和云知声雨燕UniOne等。

3. AI芯片关键技术和基准测试平台


3.1 关键技术和挑战

(1)AI芯片当前的核心是利用乘加计算(multiplier and accumulation,MAC)阵列来实现卷积神经网络中最主要的卷积运算的加速。MAC阵列的大量运算,会造成功耗的增加。很多AI应用的场景对于功耗都有严格的限制,如何达到优异的性能功耗比是AI芯片研发的一个重要目标。

(2)深度学习算法中参与计算的数据和模型参数很多,数据量庞大,导致内存带宽成为了整个系统的一个瓶颈“,Memory Wall”也是需要优化和突破的主要问题[13]

(3)除了芯片本身硬件的设计以外,软件对于AI芯片性能的发挥也有着十分重要的作用,编译器和工具链软件的优化能力、易用性现在也得到越来越多的重视。

3.2 基准测试平台

基准测试平台(Benchmark)为AI芯片建立了标准的评估体系,主要职责和意义有:

(1)基于调研和集群信息收集,真实反映AI芯片的使用情况。
(2)引入评估和选型标准。
(3)对AI芯片的架构定义和优化指引方向。基准测试平台的评估指标包括延时(ms)、吞吐量(ims/s)、能效比(ims/s/W)、利用率(ims/s/T)等。主要的基准测试台有MLPerf、DawnBench(Stanford)、DeepBench(百度)、AI Matrix(阿里巴巴)。

4. AI芯片未来趋势和探索


4.1 神经形态芯片

神经形态芯片是指颠覆经典的冯·诺依曼计算架构,采用电子技术模拟已经被证明了的生物脑的运作规则,从而构建类似于生物脑的芯片[14]

神经形态芯片的优点:

(1)计算和存储融合,突破Memory Wall瓶颈。
(2)去中心化的众核架构,强大的细粒度互联能力。
(3)更好的在线学习能力。清华大学、Intel、IBM等学校和企业都在做此方面的研究工作。

4.2 可重构计算芯片

可重构计算芯片也叫做软件定义芯片[6],主要针对目前AI芯片存在的以下问题和任务需求:

(1)高效性和灵活性难以平衡。
(2)复杂的AI任务需要不同类型AI算法任务的组合。
(3)不同任务需要的计算精度不同。可重构计算芯片的设计思想在于软硬件可编程,允许硬件架构和功能随软件变化而变化,从而可以兼顾灵活性和实现超高的能效比。

5. 云端和边缘侧AI芯片和应用


5.1 云端和边缘侧AI芯片

本研究团队从2017年开始研发AI芯片,并在当年发售了第一代云端专用AI芯片 BM1680。在2019年发布了第三代AI芯片BM1684。BM1684采用TSMC-12 nm工艺,有17.6Tops的int8和2.2Tflops的float32算力,典型功耗为16W,可以支持32路1080P的高清视频解码。基于BM1684芯片,研发了深度学习加速板卡SC5(如图1所示)、高密度计算服务器SA5、边缘计算盒子SE5、边缘计算模组SM5等面向各种不同人工智能应用的产品。

图1.深度学习加速板卡SC5

5.2 研发产品的应用

本团队的AI产品已经在云端和边缘侧的多种应用场景下落地使用,包括智慧园区(如图2所示)、城市大脑(如图3所示)、视频结构化、人脸布控、智能支付等。

图2.智慧园区解决方案

图3.城市大脑应用

6. 结论


AI芯片行业尚处于起步阶段,已经有越来越多的项目开始落地和商业化,它的快速发展有助于推动整个人工智能产业的进展。本文对AI芯片的现状和未来可能的技术方向做了调研和分析,希望可以帮助读者更好地了解AI芯片行业,AI 芯片拥有巨大的产业价值和战略地位,相信中国的科研机构和企业会努力抓住机遇,让中国的人工智能产业蓬勃发展。



文献引用:
安宝磊.AI芯片发展现状及前景分析[J].微纳电子与智能制造, 2020, 2(1): 91-94.
《微纳电子与智能制造》刊号:CN10-1594/TN
主管单位:北京电子控股有限责任公司
主办单位:北京市电子科技科技情报研究所
北京方略信息科技有限公司
投稿邮箱:tougao@mneim.org.cn(网站:www.mneim.org.cn)

参考文献:
[1] LECUN Y,BOTTOU L,BENGIO Y,et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE,1998,86( 11) : 2278-2324.
[2] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks[C]// Proceedings of the 25th International Conference on Neural Information Processing Systems.ACM, 2012: 1097-1105. 
[3] VINCENT P,LAROCHELLE H,BENGIO Y,et al. Extracting and composing robust features wi- h denoising autoencoders[C]// Proc of the 25th International Conference on Machine Learning. ACM Press,2008: 1096- 1103. 
[4] VINCENT P,LAROCHELLE H,LAJOIE I,et al. Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion [J]. Journal of Machine Learning Research,2010,11( 12) : 3371-3408. 
[5] 施羽暇 . 人工智能芯片技术研究[J]. 电信网技术, 2016, 12(12) : 11-13. SHI Y X. Research on artificial intelligence process chip technology[J]. Telecommunication network technology, 2016, 12(12) : 11-13.
[6] 清华大学 . 人工智能芯片技术白皮书 (2018)[R/OL]. (2018-12-11) [2010-01-20]. https://www.tsinghua.edu.cn/ publish/thunews/9659/2018/20181217102627644168087/ 20181217102627644168087_.html. Tsinghua University. 2018 White Paper on AI Chip Technologies[R/OL]. (2018-12-11)[2010-01-20]. https://www. tsinghua.edu.cn/publish/thunews/9659/2018/2018121710 2627644168087/20181217102627644168087_.html. 
[7] BENGIO Y. Learning deep architectures for AI[J]. Foundations and Trends in Machine Learning,2009,2(1) : 1- 127. 
[8] HINTON G E. Learning distributed representations of concepts[C]// Proc of the 8th Annual Conference of the Cognitive Science Society. 1986: 1-12. 
[9] 尹首一, 郭珩, 魏少军 . 人工智能芯片发展的现状及 趋势[J]. 科技导报, 2018, 17: 45-51. YIN S Y, GUO H, WEI S J. Present situation and future trend of artificial intelligence chips[J]. Science & Technology Review, 2018, 17: 45-51. 
[10] 汤炜伟 . AI 安防芯片的发展现状与前景分析[J]. 中 国安防, 2018, 7: 47-50. TANG W W. Analysis of the development and Prospect of AI security chip[J]. China Security&Protection, 2018, 7: 47-50. 
[11] 尹首一 . 人工智能芯片概述[J]. 微纳电子与智能制 造, 2019, 2: 7-11. YIN S Y. Overview of artificial intelligence chip[J]. Micro/nano Electronics and Intelligent Manufacturing, 2019, 2: 7-11. 
[12] 谭洪贺,余凯 . 端侧 AI 芯片的挑战和展望[J]. 人工智 能, 2018, 2: 113-121. TAN H H,YU K. The challenge and prospect of edge AI chip[J]. Artificial Intelligence, 2018, 2: 113-121. 
[13] 邱赐云, 李礼, 张欢, 等 . 大数据时代——从冯 · 诺依 曼到计算存储融合[J]. 计算机科学, 2018, 45(2): 71- 75. QIU C Y, LI L, Z H, et al. Age of big data: from von neumann to computing storage fusion[J]. Computer Science, 2018, 45(2): 71-75. 
[14] 赵正平 . 纳电子学与神经形态芯片的新进展[J]. 微纳 电子技术, 2018, 55(1): 1-5. ZHAO Z P. New progress of nanoelectronics and neuromorphic chips[J]. Micronanoelectronic Technology, 2018, 55(1): 1-5

专知便捷查看

便捷下载,请关注专知公众号(点击上方蓝色专知关注)

  • 后台回复“AICA” 就可以获取AI芯片发展现状及前景分析》专知下载链接

专知,专业可信的人工智能知识分发 ,让认知协作更快更好!欢迎注册登录专知www.zhuanzhi.ai,获取5000+AI主题干货知识资料!


欢迎微信扫一扫加入专知人工智能知识星球群,获取最新AI专业干货知识教程资料和与专家交流咨询
点击“ 阅读原文 ”,了解使用 专知 ,查看获取5000+AI主题知识资源
登录查看更多
1

相关内容

专知会员服务
66+阅读 · 2021年5月8日
视频分析中的人工智能 (AI)白皮书,16页pdf
专知会员服务
65+阅读 · 2021年5月6日
专知会员服务
64+阅读 · 2021年5月3日
专知会员服务
62+阅读 · 2021年4月16日
2021年中国人工智能在工业领域的应用研究报告(附报告)
跨媒体分析与推理技术研究综述
专知会员服务
69+阅读 · 2021年3月11日
专知会员服务
32+阅读 · 2021年2月1日
专知会员服务
45+阅读 · 2020年8月20日
深度神经网络模型压缩与加速综述
专知会员服务
128+阅读 · 2019年10月12日
2019年人工智能行业现状与发展趋势报告,52页ppt
专知会员服务
121+阅读 · 2019年10月10日
【AI芯片】计算芯片——大数据和人工智能的基石
产业智能官
9+阅读 · 2020年3月8日
5G全产业链发展分析报告
行业研究报告
11+阅读 · 2019年6月7日
【智能制造】美欧航天制造智能化发展分析
产业智能官
12+阅读 · 2019年6月6日
自动驾驶车载激光雷达技术现状分析
智能交通技术
17+阅读 · 2019年4月9日
云游戏行业发展趋势分析报告
行业研究报告
13+阅读 · 2019年3月24日
硬件加速神经网络综述
计算机研究与发展
26+阅读 · 2019年2月1日
自动泊车系统发展现状及前景分析 | 厚势
厚势
22+阅读 · 2018年1月22日
Arxiv
0+阅读 · 2021年6月20日
Arxiv
19+阅读 · 2020年12月23日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
Accelerated Methods for Deep Reinforcement Learning
Arxiv
6+阅读 · 2019年1月10日
Arxiv
9+阅读 · 2016年10月27日
VIP会员
相关VIP内容
专知会员服务
66+阅读 · 2021年5月8日
视频分析中的人工智能 (AI)白皮书,16页pdf
专知会员服务
65+阅读 · 2021年5月6日
专知会员服务
64+阅读 · 2021年5月3日
专知会员服务
62+阅读 · 2021年4月16日
2021年中国人工智能在工业领域的应用研究报告(附报告)
跨媒体分析与推理技术研究综述
专知会员服务
69+阅读 · 2021年3月11日
专知会员服务
32+阅读 · 2021年2月1日
专知会员服务
45+阅读 · 2020年8月20日
深度神经网络模型压缩与加速综述
专知会员服务
128+阅读 · 2019年10月12日
2019年人工智能行业现状与发展趋势报告,52页ppt
专知会员服务
121+阅读 · 2019年10月10日
相关资讯
【AI芯片】计算芯片——大数据和人工智能的基石
产业智能官
9+阅读 · 2020年3月8日
5G全产业链发展分析报告
行业研究报告
11+阅读 · 2019年6月7日
【智能制造】美欧航天制造智能化发展分析
产业智能官
12+阅读 · 2019年6月6日
自动驾驶车载激光雷达技术现状分析
智能交通技术
17+阅读 · 2019年4月9日
云游戏行业发展趋势分析报告
行业研究报告
13+阅读 · 2019年3月24日
硬件加速神经网络综述
计算机研究与发展
26+阅读 · 2019年2月1日
自动泊车系统发展现状及前景分析 | 厚势
厚势
22+阅读 · 2018年1月22日
相关论文
Arxiv
0+阅读 · 2021年6月20日
Arxiv
19+阅读 · 2020年12月23日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
Accelerated Methods for Deep Reinforcement Learning
Arxiv
6+阅读 · 2019年1月10日
Arxiv
9+阅读 · 2016年10月27日
Top
微信扫码咨询专知VIP会员