项目名称: 等离子显示板保护层材料性能优化

项目编号: No.61271053

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 无线电电子学、电信技术

项目作者: 屠彦

作者单位: 东南大学

项目金额: 80万元

中文摘要: 本项目采用第一性原理计算不同PDP保护层材料的电子结构,包括不同的材料掺杂、空缺以及复合材料等。分析电子跃迁过程、研究二次电子和外电子发射情况以及放电单元电场的影响。同时考虑材料内的激子激发情况,计算材料的激子光谱,从而更准确地描述PDP保护层材料的外电子发射和二次电子发射过程,揭示其发射机理。制作相应材料,测量其发光特性并与理论计算结果比较,进一步完善理论模型。在此基础上,与PDP放电过程模拟计算相结合,研究不同材料对PDP放电性能的影响。尝试寻找一种具有较好的二次电子和外电子发射性能的新型保护层材料,从而降低着火电压和维持电压,提高放电效率、减小寻址时间,以满足高氙、高气压、高分辨率PDP的需求,为获得高质量三维显示效果PDP提供关键材料。以新型超薄SMPDP为载体,理论计算为依据,制作不同保护层材料的超薄SMPDP实验屏。探索获得一种高发光效率、低放电延时PDP保护层材料的可能

中文关键词: 等离子显示;保护层;第一性原理;能带结构;放电特性

英文摘要: The electronic structures of different protective layer materials for PDP are calculated based on the first-principles, including different doping, vacancies and composite materials etc. The electron transition process is analyzed. The emission process of the secondary electron and the exo-electron are investigated and the influence of electric field in the discharge cell is considered. Meanwhile, the exciton spectrum of the protective layer material is calculated. The exo-electron and secondary electron emission process are described more accurately with the introduction of excitons effect to reveal their emission mechanism. The corresponding protective layer materials are fabricated, measured and compared with theoretical results to improve the theoretical model further. Coupled in the simulation of the discharge process, the impact of the different protective layer materials to the PDP discharge performance is investigated. A new protective layer material is designed, with high secondary electron emission and good exo-electron emission characteristics, to reduce the firing and sustaining voltage, improve the discharge efficiency, reduce the addressing time. These satisfy the requirements for high content xenon, high pressure and high resolution PDP. A high-quality three dimensional display PDP can be made wit

英文关键词: plasma display;protective layer;first principle;band structure;discharge performance

成为VIP会员查看完整内容
0

相关内容

【NeurIPS 2021】基于潜在空间能量模型的可控和组分生成
专知会员服务
16+阅读 · 2021年10月23日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
103+阅读 · 2021年8月23日
专知会员服务
36+阅读 · 2021年7月17日
【ICML2021】学习分子构象生成的梯度场
专知会员服务
14+阅读 · 2021年5月30日
专知会员服务
31+阅读 · 2021年5月7日
【WWW2021】用优化框架解释和统一图神经网络
专知会员服务
44+阅读 · 2021年2月1日
【CVPR 2020-商汤】8比特数值也能训练卷积神经网络模型
专知会员服务
25+阅读 · 2020年5月7日
Transformer性能优化:运算和显存
PaperWeekly
1+阅读 · 2022年3月29日
工程实践 | CUDA优化之LayerNorm性能优化实践
极市平台
0+阅读 · 2022年1月10日
骁龙 8 Gen1+ 环保设计,realme GT2 Pro 够性价比么?
ZEALER订阅号
0+阅读 · 2022年1月9日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
34+阅读 · 2018年7月14日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
58+阅读 · 2021年11月15日
Arxiv
20+阅读 · 2021年9月21日
Arxiv
19+阅读 · 2021年6月15日
An Attentive Survey of Attention Models
Arxiv
44+阅读 · 2020年12月15日
Arxiv
17+阅读 · 2020年11月15日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
小贴士
相关VIP内容
【NeurIPS 2021】基于潜在空间能量模型的可控和组分生成
专知会员服务
16+阅读 · 2021年10月23日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
103+阅读 · 2021年8月23日
专知会员服务
36+阅读 · 2021年7月17日
【ICML2021】学习分子构象生成的梯度场
专知会员服务
14+阅读 · 2021年5月30日
专知会员服务
31+阅读 · 2021年5月7日
【WWW2021】用优化框架解释和统一图神经网络
专知会员服务
44+阅读 · 2021年2月1日
【CVPR 2020-商汤】8比特数值也能训练卷积神经网络模型
专知会员服务
25+阅读 · 2020年5月7日
相关资讯
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
相关论文
微信扫码咨询专知VIP会员