项目名称: 表面应变的半导体纳米材料-第一性原理模拟研究

项目编号: No.51302231

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 一般工业技术

项目作者: 郭春生

作者单位: 西南交通大学

项目金额: 25万元

中文摘要: 在器件中,纳米材料的表面与其他材料接触,因晶格的不匹配,表面应变具有普遍性。这种结构上的细微改变,可能对纳米材料的各项性质起重要影响。实验本身确定界面的局部应变结构及其带来的性质影响存在着巨大挑战,而已有的理论模拟,因为建模的困难,几乎没有关于纳米材料表面应变的研究。本项目通过自主开发的"循环替代法",引入表面杂质导致应变,再通过一定的束缚手段保留该形变,并用原材料原子替代回杂质原子,得到包含拉伸、压缩应变表面的纳米材料模型,以此研究半导体纳米材料表面应变的结构、稳定性。同时使用第一性原理方法,研究表面应变对材料功函数、能带结构的调制作用,以及对该材料其他关键性质,如电子学、磁学、光学等性质的影响。本项目对了解材料接触表面的应变结构细节,深入揭示表面应变与器件的性能和工作效率的关系,寻找稳定且高效提升器件性能的接触界面,理论与实验的互补等具有重要意义。

中文关键词: 表面应变;第一性原理;二维材料;原子力显微镜;

英文摘要: When built in devices, surface of a semiconducting nanomaterial is usually strained due to interface with other materials of different lattice constant. This structural change on surface could take signification modification on properties of nanomaterials. However, experiments are with great challenges to explore the local structure of strained surface and the concomitant influence. Meanwhile, there are very few theoretical simulations done for strained surface due to the difficulties of modeling the local structural strain. In this project, we plan to use "cyclic replacement" method, which developed by ourselves, to introduce surface tensile or compressive strain: we substitute target surface atoms with different impurities to produce structural modification, and afterwards the surface strain induced by the impurities are maintained with some special constrains after the impurities are removed and replaced by the original atoms. With first principle approaches, the structural detail and stability of the strained surface will be studied. Furthermore, the influence of the surface strain on work function, band structures, and electronic, optical and magnetic properties of the semiconducting nanomaterials will be explored. This project is of significance to understand the structural detail of strained surface, to r

英文关键词: surface strain;first principles approach;two dimentional materials;atomic force microscopy;

成为VIP会员查看完整内容
1

相关内容

《美国太空部队的数字化服务愿景》,17页 pdf
专知会员服务
41+阅读 · 2022年4月4日
【哈佛大学】深度学习理论实证探究
专知会员服务
43+阅读 · 2021年11月1日
专知会员服务
43+阅读 · 2021年9月7日
专知会员服务
22+阅读 · 2021年6月26日
专知会员服务
33+阅读 · 2021年5月7日
【经典书】操作系统导论,687页pdf
专知会员服务
172+阅读 · 2020年10月28日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Arxiv
1+阅读 · 2022年4月19日
Transformers in Medical Image Analysis: A Review
Arxiv
40+阅读 · 2022年2月24日
Arxiv
12+阅读 · 2019年3月14日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
小贴士
相关VIP内容
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员