Single-particle cryo-electron microscopy (cryo-EM) has become one of the mainstream structural biology techniques because of its ability to determine high-resolution structures of dynamic bio-molecules. However, cryo-EM data acquisition remains expensive and labor-intensive, requiring substantial expertise. Structural biologists need a more efficient and objective method to collect the best data in a limited time frame. We formulate the cryo-EM data collection task as an optimization problem in this work. The goal is to maximize the total number of good images taken within a specified period. We show that reinforcement learning offers an effective way to plan cryo-EM data collection, successfully navigating heterogenous cryo-EM grids. The approach we developed, cryoRL, demonstrates better performance than average users for data collection under similar settings.
翻译:单粒子冷冻电子显微镜(cryo-EM)已成为主流结构生物学技术之一,因为它能够确定动态生物分子的高分辨率结构,然而,冷冻电子微电子显微镜(Cryo-EM)数据采集仍然昂贵,需要大量专门知识,需要大量人力。结构生物学家需要一个更高效、更客观的方法在有限的时间框架内收集最佳数据。我们把冷冻电子微电子显微镜的数据收集任务作为这项工作的一个优化问题。我们的目标是最大限度地增加在特定时期内拍摄的好图像的总数。我们表明,强化学习是规划冷冻-EM数据收集的有效方法,成功导航热电磁电网。我们开发的冷冻热电网比在类似环境下收集数据的普通用户表现更好。