We present NEAMER -- Named Entity Augmented Multi-word Expression Recognizer. This system is inspired by non-compositionality characteristics shared between Named Entity and Idiomatic Expressions. We utilize transfer learning and locality features to enhance idiom classification task. This system is our submission for SemEval Task 2: Multilingual Idiomaticity Detection and Sentence Embedding Subtask A OneShot shared task. We achieve SOTA with F1 0.9395 during post-evaluation phase. We also observe improvement in training stability. Lastly, we experiment with non-compositionality knowledge transfer, cross-lingual fine-tuning and locality features, which we also introduce in this paper.
翻译:我们介绍了NEAMER -- -- 命名实体增强多字表达式识别器,该系统受命名实体和多语种表达式之间共享的非组合特性的启发,我们利用转让学习和地点特征加强本级分类任务,这是我们提交SEMEval任务2:多语言的多语种特征检测和判决包含的子塔斯克 A OneShot 共同任务,我们在评估后阶段以F1 0.9395实现SOTA,我们还注意到培训稳定性的改善。最后,我们试验了非组合知识转移、跨语言微调和地点特征,我们也在本文中介绍了这些特征。