Improving Subgraph Recognition with Variational Graph Information Bottleneck
Junchi Yu, Jie Cao, Ran He
子图识别问题是指识别图结构数据中的与图属性有关的预测性子图。该问题是图神经网络可解释性分析、组织病理学分析以及鲁棒图分类等任务中的关键性问题。针对该问题,现有的方法通过优化图信息瓶颈目标函数来识别预测性子图。然而,由于互信息估计过程十分繁琐且难以准确估计,现有的方法训练耗时且不稳定,并极易得到退化解。因此,本文提出了变分图信息瓶颈方法。该方法首先引入噪声注入模块,对图数据中的节点依概率选择性注入噪声从而得到扰动图。通过比较扰动图与原始图预测结果的差别来衡量注入噪声节点的重要性。针对采样过程不可导,我们设计了基于重参数化技巧的噪声注入方法。通过引入噪声注入模块,我们将原始图信息瓶颈目标函数转化为变分图信息目标函数,并利用变分技巧得到了目标函数的变分上界。通过优化该变分上界求解图信息瓶颈问题,提高了优化过程的稳定性与速度。最后,将扰动图中的噪声节点去掉即得到了预测性子图。我们在多种视觉任务和图学习任务上测试了变分图信息瓶颈方法。实验结果表明该方法不仅易于优化,且在多种任务上取得很好的效果。
基于变分信息瓶颈的子图识别框架