项目名称: 基于复平面上性质良好的复小波函数问题的研究
项目编号: No.11301276
项目类型: 青年科学基金项目
立项/批准年度: 2014
项目学科: 数理科学和化学
项目作者: 薛艳梅
作者单位: 南京信息工程大学
项目金额: 22万元
中文摘要: 目前,复小波问题的研究已逐渐成为小波理论分析研究的热点问题,其应用涉及自然科学与工程技术的许多领域。本项目拟提出从复平面的角度上来研究相关的复小波函数的性质及其构造。首先,给出复平面上定义的细分方程,并围绕该细分方程讨论相应的细分函数的相关性质,比如紧支撑性、正交性、共轭对称性、光滑性、稳定性等;其次,利用本项目提出的复小波问题进一步研究R^2上具有较一般伸缩矩阵的二元小波函数的构造,并讨论其相应的性质;最后,提出有效合理的算法,构造性质良好的复小波(框架),研究复小波(框架)相对于实小波(框架)在应用上有何优势,并将所取得的成果进一步推广到实际应用中。该研究的开展将进一步拓展小波理论研究的广度和深度,且在实际中具有应用意义。
中文关键词: 复小波;滑移率;滑模控制;重叠峰分辨;仿射变换
英文摘要: Nowadays, the research on complex wavelets has been an active research branch in wavelet analysis. Its applications involve many areas in natural science and engineering technology. This project studies the related complex wavelets based on complex plane. First, the definition of refinement equation on complex plane is given, and the properties of the corresponding refinable function are discussed, such as compactly supported, orthogonality, conjugated symmetry, smoothness, stability. Second, the wavelets with general dilation matrix in R^2 can be studied by utilizing the complex wavelets on complex plane. Finally, several algorithms for constructing the complex wavelets (frames) with desired properties are derived and the superiority of complex wavelets compared to real wavelets on the application are discussed. The obtained results are also extended to practical application. The research project will further broaden and deepen the research on wavelet theory and also be useful for the practical applications.
英文关键词: complex wavelet;slip ratio;sliding mode control;overlapped resolution;affine transformation