经典机器学习算法假设训练数据和测试数据具有相同的输入特征空间和相同的数据分布。在诸多现实问题中,这一假设往往不能满足,导致经典机器学习算法失效。领域自适应是一种新的学习范式,其关键技术在于通过学习新的特征表达来对齐源域和目标域的数据分布,使得在有标签源域训练的模型可以直接迁移到没有标签的目标域上,同时不会引起性能的明显损失。本文介绍领域自适应的定义,分类和代表性算法,重点讨论基于度量学习的领域自适应算法和基于对抗学习的领域自适应算法。最后,分析领域自适应的典型应用和存在挑战,明确领域自适应的发展趋势,并提出未来可能的研究方向。