来自:开源最前线(ID:OpenSourceTop)
打开GitHub Trending,排行第一的项目成功引起了我的注意——deeplearning-models
该项目是Jupyter Notebook中TensorFlow和PyTorch的各种深度学习架构,模型和技巧的集合。
这份集合的内容到底有多丰富呢?一起来看看
传统机器学习
感知器
TensorFlow 1:
https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/basic-ml/perceptron.ipynb
PyTorch:
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/basic-ml/perceptron.ipynb
逻辑回归
TensorFlow 1:
https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/basic-ml/logistic-regression.ipynb
PyTorch:
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/basic-ml/logistic-regression.ipynb
Softmax Regression (Multinomial Logistic Regression)
TensorFlow 1:
https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/basic-ml/softmax-regression.ipynb
PyTorch:
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/basic-ml/softmax-regression.ipynb
多层感知器
多层感知器
TensorFlow 1:
https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/mlp/mlp-basic.ipynb
PyTorch:
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mlp/mlp-basic.ipynb
具有Dropout多层感知器
TensorFlow 1:
https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/mlp/mlp-dropout.ipynb
PyTorch:
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mlp/mlp-dropout.ipynb
具有批量归一化的多层感知器
TensorFlow 1:
https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/mlp/mlp-batchnorm.ipynb
PyTorch:
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mlp/mlp-batchnorm.ipynb
具有反向传播的多层感知器
TensorFlow 1:
https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/mlp/mlp-lowlevel.ipynb
PyTorch:
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mlp/mlp-fromscratch__sigmoid-mse.ipynb
CNN
基础
CNN
TensorFlow 1:
https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/cnn/convnet.ipynb
PyTorch:
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-basic.ipynb
具有He初始化的CNN
PyTorch:
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-he-init.ipynb
概念
用等效卷积层代替完全连接
PyTorch:
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/fc-to-conv.ipynb
全卷积:全卷积神经网络
PyTorch:
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-allconv.ipynb
AlexNet:AlexNet on CIFAR-10
PyTorch:
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-alexnet-cifar10.ipynb
VGG:CNN VGG-16
TensorFlow 1:
https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/cnn/cnn-vgg16.ipynb
PyTorch:
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-vgg16.ipynb
VGG-16 Gender Classifier Trained on CelebA
PyTorch:
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-vgg16-celeba.ipynb
CNN VGG-19
PyTorch:
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-vgg19.ipynb
ResNet:ResNet and Residual Blocks
PyTorch:
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/resnet-ex-1.ipynb
ResNet-18 Digit Classifier Trained on MNIST
PyTorch:
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-resnet18-mnist.ipynb
ResNet-18 Gender Classifier Trained on CelebA
PyTorch:
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-resnet18-celeba-dataparallel.ipynb
ResNet-34 Digit Classifier Trained on MNIST
PyTorch:
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-resnet34-mnist.ipynb
ResNet-34 Gender Classifier Trained on CelebA
PyTorch:
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-resnet34-celeba-dataparallel.ipynb
ResNet-50 Digit Classifier Trained on MNIST
PyTorch:
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-resnet50-mnist.ipynb
ResNet-50 Gender Classifier Trained on CelebA
PyTorch:
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-resnet50-celeba-dataparallel.ipynb
ResNet-101 Gender Classifier Trained on CelebA
PyTorch:
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-resnet101-celeba.ipynb
ResNet-152 Gender Classifier Trained on CelebA
PyTorch:
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-resnet152-celeba.ipynb
Network in Network
Network in Network CIFAR-10 Classifier
PyTorch:
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/nin-cifar10.ipynb
度量学习:具有多层感知器的孪生网络
TensorFlow 1:
https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/metric/siamese-1.ipynb
自动编码机
全连接自动编码机:自动编码机
TensorFlow 1:
https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/autoencoder/autoencoder.ipynb
PyTorch:
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-basic.ipynb
具有解卷积/转置卷积的卷积自动编码机
TensorFlow 1:
https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/autoencoder/ae-deconv.ipynb
PyTorch:
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-deconv.ipynb
具有解卷积的卷积自动编码机(无池化操作)
PyTorch:
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/aer-deconv-nopool.ipynb
具有最近邻插值的卷积自动编码机
TensorFlow 1:
https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/autoencoder/autoencoder-conv-nneighbor.ipynb
PyTorch:
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-conv-nneighbor.ipynb
具有最近邻插值的卷积自动编码机 - 在CelebA上进行训练
PyTorch:
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-conv-nneighbor-celeba.ipynb
具有最近邻插值的卷积自动编码机 - 在Quickdraw上训练
PyTorch:
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-conv-nneighbor-quickdraw-1.ipynb
变分自动编码机
变分自动编码机
PyTorch:
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-var.ipynb
卷积变分自动编码机
PyTorch:
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-conv-var.ipynb
条件变分自动编码机
条件变分自动编码机(重建丢失中带标签)
PyTorch:
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-cvae.ipynb
条件变分自动编码机(重建损失中没有标签)
PyTorch:
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-cvae_no-out-concat.ipynb
卷积条件变分自动编码机(重建丢失中带标签)
PyTorch:
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-cnn-cvae.ipynb
卷积条件变分自动编码机(重建损失中没有标签)
PyTorch:
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-cnn-cvae_no-out-concat.ipynb
GAN
MNIST上完全连接的GAN
TensorFlow 1:
https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/gan/gan.ipynb
PyTorch:
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/gan/gan.ipynb
MNIST上的卷积GAN
TensorFlow 1:
https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/gan/gan-conv.ipynb
PyTorch:
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/gan/gan-conv.ipynb
具有标签平滑的MNIST上的卷积GAN
PyTorch:
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/gan/gan-conv-smoothing.ipynb
RNN
Many-to-one: Sentiment Analysis / Classification
A simple single-layer RNN (IMDB)
PyTorch:
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/rnn/rnn_simple_imdb.ipynb
A simple single-layer RNN with packed sequences to ignore padding characters (IMDB)
PyTorch:
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/rnn/rnn_simple_packed_imdb.ipynb
RNN with LSTM cells (IMDB)
PyTorch:
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/rnn/rnn_lstm_packed_imdb.ipynb
RNN with LSTM cells and Own Dataset in CSV Format (IMDB)
PyTorch:
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/rnn/rnn_lstm_packed_own_csv_imdb.ipynb
RNN with GRU cells (IMDB)
PyTorch:
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/rnn/rnn_gru_packed_imdb.ipynb
Multilayer bi-directional RNN (IMDB)
PyTorch:
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/rnn/rnn_gru_packed_imdb.ipynb
以上列举的都只是冰山一角而已,喜欢的伙伴们可以自己到GitHub上一探究竟,最后附上GitHub地址:https://github.com/rasbt/deeplearning-models
●编号837,输入编号直达本文
●输入m获取文章目录
开源最前线