这个项目火了!各种深度学习架构,模型和技巧的集合

2019 年 6 月 13 日 大数据技术

来自:开源最前线(ID:OpenSourceTop)


打开GitHub Trending,排行第一的项目成功引起了我的注意——deeplearning-models



该项目是Jupyter Notebook中TensorFlow和PyTorch的各种深度学习架构,模型和技巧的集合。


这份集合的内容到底有多丰富呢?一起来看看



传统机器学习


感知器


TensorFlow 1:

https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/basic-ml/perceptron.ipynb


PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/basic-ml/perceptron.ipynb



逻辑回归


TensorFlow 1:

https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/basic-ml/logistic-regression.ipynb


PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/basic-ml/logistic-regression.ipynb


Softmax Regression (Multinomial Logistic Regression)


TensorFlow 1:

https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/basic-ml/softmax-regression.ipynb


PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/basic-ml/softmax-regression.ipynb



多层感知器


多层感知器


TensorFlow 1:

https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/mlp/mlp-basic.ipynb


PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mlp/mlp-basic.ipynb



具有Dropout多层感知器


TensorFlow 1:

https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/mlp/mlp-dropout.ipynb


PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mlp/mlp-dropout.ipynb



具有批量归一化的多层感知器


TensorFlow 1:

https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/mlp/mlp-batchnorm.ipynb


PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mlp/mlp-batchnorm.ipynb



具有反向传播的多层感知器


TensorFlow 1:

https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/mlp/mlp-lowlevel.ipynb


PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mlp/mlp-fromscratch__sigmoid-mse.ipynb



CNN


基础


CNN

TensorFlow 1:

https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/cnn/convnet.ipynb


PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-basic.ipynb



具有He初始化的CNN


PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-he-init.ipynb



概念


用等效卷积层代替完全连接


PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/fc-to-conv.ipynb


全卷积:全卷积神经网络


PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-allconv.ipynb


AlexNet:AlexNet on CIFAR-10


PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-alexnet-cifar10.ipynb



VGG:CNN VGG-16


TensorFlow 1:

https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/cnn/cnn-vgg16.ipynb


PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-vgg16.ipynb



VGG-16 Gender Classifier Trained on CelebA


PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-vgg16-celeba.ipynb



CNN VGG-19


PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-vgg19.ipynb


ResNet:ResNet and Residual Blocks


PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/resnet-ex-1.ipynb



ResNet-18 Digit Classifier Trained on MNIST


PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-resnet18-mnist.ipynb



ResNet-18 Gender Classifier Trained on CelebA


PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-resnet18-celeba-dataparallel.ipynb



ResNet-34 Digit Classifier Trained on MNIST


PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-resnet34-mnist.ipynb



ResNet-34 Gender Classifier Trained on CelebA


PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-resnet34-celeba-dataparallel.ipynb



ResNet-50 Digit Classifier Trained on MNIST


PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-resnet50-mnist.ipynb



ResNet-50 Gender Classifier Trained on CelebA


PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-resnet50-celeba-dataparallel.ipynb



ResNet-101 Gender Classifier Trained on CelebA


PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-resnet101-celeba.ipynb



ResNet-152 Gender Classifier Trained on CelebA


PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-resnet152-celeba.ipynb



Network in Network


Network in Network CIFAR-10 Classifier


PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/nin-cifar10.ipynb 



度量学习:具有多层感知器的孪生网络


TensorFlow 1:

https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/metric/siamese-1.ipynb



自动编码机


全连接自动编码机:自动编码机


TensorFlow 1:

https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/autoencoder/autoencoder.ipynb


PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-basic.ipynb



具有解卷积/转置卷积的卷积自动编码机


TensorFlow 1:

https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/autoencoder/ae-deconv.ipynb


PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-deconv.ipynb



具有解卷积的卷积自动编码机(无池化操作)


PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/aer-deconv-nopool.ipynb



具有最近邻插值的卷积自动编码机


TensorFlow 1:

https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/autoencoder/autoencoder-conv-nneighbor.ipynb


PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-conv-nneighbor.ipynb



具有最近邻插值的卷积自动编码机 - 在CelebA上进行训练


PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-conv-nneighbor-celeba.ipynb


具有最近邻插值的卷积自动编码机 - 在Quickdraw上训练


PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-conv-nneighbor-quickdraw-1.ipynb



变分自动编码机


变分自动编码机


PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-var.ipynb


卷积变分自动编码机


PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-conv-var.ipynb



条件变分自动编码机


条件变分自动编码机(重建丢失中带标签)


PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-cvae.ipynb


条件变分自动编码机(重建损失中没有标签)


PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-cvae_no-out-concat.ipynb


卷积条件变分自动编码机(重建丢失中带标签)


PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-cnn-cvae.ipynb


卷积条件变分自动编码机(重建损失中没有标签)


PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-cnn-cvae_no-out-concat.ipynb



GAN


MNIST上完全连接的GAN


TensorFlow 1:

https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/gan/gan.ipynb


PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/gan/gan.ipynb



MNIST上的卷积GAN


TensorFlow 1:

https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/gan/gan-conv.ipynb


PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/gan/gan-conv.ipynb



具有标签平滑的MNIST上的卷积GAN


PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/gan/gan-conv-smoothing.ipynb



RNN


Many-to-one: Sentiment Analysis / Classification


A simple single-layer RNN (IMDB)


PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/rnn/rnn_simple_imdb.ipynb



A simple single-layer RNN with packed sequences to ignore padding characters (IMDB)


PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/rnn/rnn_simple_packed_imdb.ipynb



RNN with LSTM cells (IMDB)


PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/rnn/rnn_lstm_packed_imdb.ipynb



RNN with LSTM cells and Own Dataset in CSV Format (IMDB)


PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/rnn/rnn_lstm_packed_own_csv_imdb.ipynb



RNN with GRU cells (IMDB)


PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/rnn/rnn_gru_packed_imdb.ipynb



Multilayer bi-directional RNN (IMDB)


PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/rnn/rnn_gru_packed_imdb.ipynb


以上列举的都只是冰山一角而已,喜欢的伙伴们可以自己到GitHub上一探究竟,最后附上GitHub地址:https://github.com/rasbt/deeplearning-models



●编号837,输入编号直达本文

●输入m获取文章目录

推荐↓↓↓

开源最前线

登录查看更多
13

相关内容

【资源】100+本免费数据科学书
专知会员服务
107+阅读 · 2020年3月17日
一网打尽!100+深度学习模型TensorFlow与Pytorch代码实现集合
深度学习界圣经“花书”《Deep Learning》中文版来了
专知会员服务
233+阅读 · 2019年10月26日
注意力机制模型最新综述
专知会员服务
266+阅读 · 2019年10月20日
深度学习算法与架构回顾
专知会员服务
80+阅读 · 2019年10月20日
TensorFlow 2.0 学习资源汇总
专知会员服务
66+阅读 · 2019年10月9日
Yann LeCun都推荐的深度学习资料合集!
InfoQ
14+阅读 · 2019年7月7日
入门 | 深度学习模型的简单优化技巧
机器之心
9+阅读 · 2018年6月10日
[学习] 这些深度学习网络训练技巧,你了解吗?
菜鸟的机器学习
7+阅读 · 2017年7月29日
推荐|TensorFlow/PyTorch/Sklearn实现的五十种机器学习模型
全球人工智能
24+阅读 · 2017年7月14日
Arxiv
7+阅读 · 2020年3月1日
Image Segmentation Using Deep Learning: A Survey
Arxiv
44+阅读 · 2020年1月15日
Arxiv
53+阅读 · 2018年12月11日
Arxiv
11+阅读 · 2018年7月8日
Arxiv
4+阅读 · 2018年4月26日
Arxiv
10+阅读 · 2018年2月4日
VIP会员
相关VIP内容
相关论文
Arxiv
7+阅读 · 2020年3月1日
Image Segmentation Using Deep Learning: A Survey
Arxiv
44+阅读 · 2020年1月15日
Arxiv
53+阅读 · 2018年12月11日
Arxiv
11+阅读 · 2018年7月8日
Arxiv
4+阅读 · 2018年4月26日
Arxiv
10+阅读 · 2018年2月4日
Top
微信扫码咨询专知VIP会员