项目名称: 氧化物半导体纳米线中可逆巨电致电阻效应的机理研究

项目编号: No.51272261

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 一般工业技术

项目作者: 诸葛飞

作者单位: 中国科学院宁波材料技术与工程研究所

项目金额: 80万元

中文摘要: 基于氧化物可逆巨电致电阻(CER)效应的电阻型随机存储器(RRAM)在性能和成本方面表现出巨大优势。但是,CER物理机制不清楚已经成为制约RRAM实用化的主要障碍。和薄膜相比,氧化物纳米线(NW)在研究CER机理方面具有独特的优势,例如,可利用电镜实时观测电激励下NW结构及微结构的变化,以及NW物理化学性能对环境敏感等。因此,研究氧化物NW CER效应,在RRAM研究领域具有重要的科学和技术意义。本项目选取n型ZnO 和p型NiO 单根NW 作为研究对象,利用可原位施加电压透射电镜、气氛和温度及光照可变电学探针台等测试手段,结合第一性原理计算,系统研究结构、微结构、化学成分、气氛、光照、温度、掺杂、电极材料等因素对NW CER影响规律。通过本项目的研究,我们希望能阐明二元氧化物NW可逆CER发生机制,深入理解氧化物CER内在机理,从而为RRAM 存储器件设计提供理论指导。

中文关键词: 氧化物纳米线;电致电阻;电阻型随机存储器;机理;

英文摘要: As a denser, faster and less energy-consuming non-volatile memory, which is based on colossal electroresistance (CER) effects, resistance random access memory (RRAM) has attracted increasing attention. It is extremely important to clarify CER mechanism since the ambiguousness of CER mechanism has severely restricted the development of oxide-based RRAMs. Compared to oxide thin films, oxide nanowires (NWs) show unique advantages on CER mechanism investigation, such as feasible in situ observation of structure and micro-structure variations of NWs by transmission electron microscope (TEM) and enviorment-sensitive physical and chemical properties of NWs. In this project, both n-type ZnO and p-type NiO NWs are selected to study CER mechanism of oxides. By an in situ TEM method and electrical probe station with variable enviroments as well as first principle calculation, the effects of structure, micro-structure, chemical composition, atmosphere, illumination, temperature, doping, and electrode material on CER of NWs are systematically investigated. This project aims to clarify CER mechanism of oxide NWs and understand CER mechanism of oxides, therefore providing theoretical guidance for RRAM material selection and device design.

英文关键词: oxide nanowires;electroresistance;resistance random access memory;mechanism;

成为VIP会员查看完整内容
0

相关内容

【干货书】预测原理与实战,Forecasting: Principles & Practice
专知会员服务
92+阅读 · 2022年4月11日
重磅!819页pdf《动⼿学深度学习 Release 2.0.0-beta0》2022版
专知会员服务
403+阅读 · 2022年2月16日
【2022新书】经典与量子计算导论,392页pdf
专知会员服务
70+阅读 · 2022年1月17日
专知会员服务
78+阅读 · 2021年10月19日
专知会员服务
112+阅读 · 2021年9月22日
专知会员服务
36+阅读 · 2021年7月17日
2021年全球量子信息发展报告, 32页pdf
专知会员服务
78+阅读 · 2021年5月14日
专知会员服务
31+阅读 · 2021年5月7日
【经典书】数理统计学,142页pdf
专知会员服务
96+阅读 · 2021年3月25日
DigiTimes:下一代iPhone的芯片将基于“4nm”工艺
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年4月20日
RIS-Assisted Cooperative NOMA with SWIPT
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
57+阅读 · 2022年1月5日
Max-Margin Contrastive Learning
Arxiv
18+阅读 · 2021年12月21日
小贴士
相关VIP内容
【干货书】预测原理与实战,Forecasting: Principles & Practice
专知会员服务
92+阅读 · 2022年4月11日
重磅!819页pdf《动⼿学深度学习 Release 2.0.0-beta0》2022版
专知会员服务
403+阅读 · 2022年2月16日
【2022新书】经典与量子计算导论,392页pdf
专知会员服务
70+阅读 · 2022年1月17日
专知会员服务
78+阅读 · 2021年10月19日
专知会员服务
112+阅读 · 2021年9月22日
专知会员服务
36+阅读 · 2021年7月17日
2021年全球量子信息发展报告, 32页pdf
专知会员服务
78+阅读 · 2021年5月14日
专知会员服务
31+阅读 · 2021年5月7日
【经典书】数理统计学,142页pdf
专知会员服务
96+阅读 · 2021年3月25日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
相关论文
微信扫码咨询专知VIP会员