项目名称: 无人车越野环境感知关键技术研究

项目编号: No.51205038

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 机械工程学科

项目作者: 赵一兵

作者单位: 大连理工大学

项目金额: 25万元

中文摘要: 本项目借鉴计算机图像处理、模式识别、传感器信息融合等多学科理论知识,在认知机理模拟和计算的层次上探索环境感知的新方法,研究面向越野环境的无人车自主导航关键技术,初步实现具有多传感器信息交互的越野无人车环境感知技术框架。本课题提出基于概率检验法和混合高斯模型探测环境中可行驶区域,并利用三维数据的穿透率、图像边缘链码曲率、协方差矩阵的主成分分析等方法,提取观测目标来自每个传感器的特征向量,采用摸出插值法确定隶属度以及相关系数构造基本概率赋值函数,基于D-S证据融合理论产生更精确的目标身份分类识别结果,它是越野无人车实现运动行为控制、自主导航的分析依据,也是实现野外环境高速行驶的必要前提条件。

中文关键词: 地面无人车辆;环境感知;模式识别;传感器信息融合;

英文摘要: Involving computer image processing, pattern recognition, multi-sensors data fusion and multidisciplinary theory, this project explore new way of environmental perception based on analogue and computation of cognitive mechanism. The key technology of autonomous navigation for unmanned ground vehicle (UGV) working in field environment would be developed to implement a cross country UGV environmental perception technical framework which enables information interact among sensors. A way based on probability test and Gaussian Mixture Model to obtain the running region of the UGV are proposed in this subject, which applies methods by analyzing the principal component such as distance contrast of three-dimension data, image edge chain-code curvature, covariance matrix and so on. Characteristic vectors of the objects are gathered from each sensor. Then the subordination obtained by using the fuzzy interpolation is applied to calculate the basic probability assignment. It is supposed that the subordination is equal to correlation coefficient in the formula. More accurate results of object identification would be achieved by using the D-S theory of evidence. Control on motion behavior of cross-country UGV and autonomous navigation are based on this theory, which is a necessary pre-condition for realizing UGV high speed d

英文关键词: unmanned ground vehicle;environment perception;patter recognition;data information fusion;

成为VIP会员查看完整内容
1

相关内容

军事知识图谱构建技术
专知会员服务
125+阅读 · 2022年4月8日
【新书】感知和行动的贝叶斯模型,348页pdf
专知会员服务
71+阅读 · 2021年11月18日
专知会员服务
64+阅读 · 2021年5月3日
专知会员服务
133+阅读 · 2021年2月17日
最新《深度学习自动驾驶》技术综述论文,28页pdf
专知会员服务
153+阅读 · 2020年6月14日
【新书】感知和行动的贝叶斯模型,348页pdf
深度学习技术在自动驾驶中的应用
智能交通技术
26+阅读 · 2019年10月27日
基于虚拟现实环境的深度学习模型构建
MOOC
24+阅读 · 2019年9月28日
自动驾驶技术解读——自动驾驶汽车决策控制系统
智能交通技术
30+阅读 · 2019年7月7日
我国智能网联汽车车路协同发展路线政策及示范环境研究
自动驾驶汽车技术路线简介
智能交通技术
15+阅读 · 2019年4月25日
深度学习在自动驾驶感知领域的应用
AI100
11+阅读 · 2019年3月6日
干货|全景视频拼接的关键技术分析
全球人工智能
13+阅读 · 2017年7月15日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
3+阅读 · 2011年12月31日
APPL: Adaptive Planner Parameter Learning
Arxiv
0+阅读 · 2022年5月18日
小贴士
相关资讯
【新书】感知和行动的贝叶斯模型,348页pdf
深度学习技术在自动驾驶中的应用
智能交通技术
26+阅读 · 2019年10月27日
基于虚拟现实环境的深度学习模型构建
MOOC
24+阅读 · 2019年9月28日
自动驾驶技术解读——自动驾驶汽车决策控制系统
智能交通技术
30+阅读 · 2019年7月7日
我国智能网联汽车车路协同发展路线政策及示范环境研究
自动驾驶汽车技术路线简介
智能交通技术
15+阅读 · 2019年4月25日
深度学习在自动驾驶感知领域的应用
AI100
11+阅读 · 2019年3月6日
干货|全景视频拼接的关键技术分析
全球人工智能
13+阅读 · 2017年7月15日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
3+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员