An established model for sound energy decay functions (EDFs) is the superposition of multiple exponentials and a noise term. This work proposes a neural-network-based approach for estimating the model parameters from EDFs. The network is trained on synthetic EDFs and evaluated on two large datasets of over 20000 EDF measurements conducted in various acoustic environments. The evaluation shows that the proposed neural network architecture robustly estimates the model parameters from large datasets of measured EDFs, while being lightweight and computationally efficient. An implementation of the proposed neural network is publicly available.
翻译:健全的能源衰减功能(EDFs)的既定模型是多个指数和噪音术语的叠加。这项工作提出了一种基于神经网络的方法来估计来自EDFs的模型参数。该网络接受合成的EDFs培训,并评估了在各种声学环境中进行的20000年以上的EDF测量的两大数据集。评价表明,拟议的神经网络结构从已测量的EDF的大型数据集中强有力地估计了模型参数,同时具有轻度和计算效率。拟议的神经网络的实施是公开的。