项目名称: 常值推力航天器自主交会对接鲁棒控制方法研究

项目编号: No.61304088

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 自动化技术、计算机技术

项目作者: 祁永强

作者单位: 中国矿业大学

项目金额: 23万元

中文摘要: 本项目针对航天器自主交会对接过程中对接精度,碰撞规避和安全撤离等问题,从鲁棒和自适应的观点出发,提出常值推力航天器自主交会对接高性能控制器设计的基本原理和方法,研究常值推力作用下鲁棒和自适应控制器的混合工作原理以及控制器所产生的性能限制。通过提出新的视觉测量算法来确定目标航天器的相对位置参数,采用等时间划分和等距离划分的方法,来解决追踪航天器目标机动位置和推力器在各个轴向上的工作时间序列确定问题。通过改进鲁棒控制器的设计条件或准则的保守性,解决常值推力作用下控制系统的不确定参数和自适应参数的确定问题,并进行科学的系统仿真。所得结果可应用到航天器自主交会对接,碰撞规避和自主安全撤离等领域中的控制系统设计,具有重要的理论意义和广泛的应用价值。

中文关键词: 航天器控制;交会对接;鲁棒控制;常值推力;碰撞规避

英文摘要: For the problem of spacecraft autonomous rendezvous and docking, collision avoidance and autonomous safe departure,the basic principles and methods of high-performance controller design under constant thrust are studied in this project from the point of view of the robust and adaptive,and the hybrid work principle of the robust and adaptive controller and the corresponding performance limitations generated by the controller structure under the constant thrust are analyzed.A new visual measurement calculation method is proposed to determine the relative position parameters of the target spacecraft,and the target manoeuvre positions of the chaser and the corresponding working time sequences of the thrusters in three axes can be calculated by using the isochronous and the equidistant interpolation methods.The uncertain parameters of the control system and the adaptive parameters can be determined through the improved design conditions of robust controller or the conservation of the criterions and the scientific system simulations will be carried out. The results can be applied to the control system design for spacecraft autonomous rendezvous and docking, collision avoidance and autonomous safe departure, have important theoretical significance and wide application value.

英文关键词: Spacecraft control;rendezvous and docking;Robust control;Constant thrust;Collision avoidance

成为VIP会员查看完整内容
0

相关内容

Kyoto大学Toshiyuki:快速复杂控制系统的实时优化,133页ppt
【博士论文】集群系统中的网络流调度
专知会员服务
42+阅读 · 2021年12月7日
【NeurIPS2021】神经网络表示的相似度和匹配
专知会员服务
26+阅读 · 2021年10月29日
专知会员服务
32+阅读 · 2021年9月14日
专知会员服务
98+阅读 · 2021年7月11日
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
132+阅读 · 2021年2月17日
【UCLA】基于深度神经网络的工业大模型预测控制,36页ppt
B站小伙教你十分钟学会研发火箭,看完只会喊牛
学术头条
0+阅读 · 2021年10月16日
【APC】先进过程控制系统(APC: Advanced Process Control)
产业智能官
61+阅读 · 2020年7月12日
【无人机】无人机的自主与智能控制
产业智能官
47+阅读 · 2017年11月27日
李克强:智能车辆运动控制研究综述
厚势
20+阅读 · 2017年10月17日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
1+阅读 · 2022年4月19日
Arxiv
58+阅读 · 2021年11月15日
Object Detection in 20 Years: A Survey
Arxiv
48+阅读 · 2019年5月13日
小贴士
相关VIP内容
Kyoto大学Toshiyuki:快速复杂控制系统的实时优化,133页ppt
【博士论文】集群系统中的网络流调度
专知会员服务
42+阅读 · 2021年12月7日
【NeurIPS2021】神经网络表示的相似度和匹配
专知会员服务
26+阅读 · 2021年10月29日
专知会员服务
32+阅读 · 2021年9月14日
专知会员服务
98+阅读 · 2021年7月11日
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
132+阅读 · 2021年2月17日
【UCLA】基于深度神经网络的工业大模型预测控制,36页ppt
相关基金
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员