项目名称: 铁磁半导体氧化物异质结薄膜的界面调控和性能表征

项目编号: No.11704011

项目类型: 青年科学基金项目

立项/批准年度: 2018

项目学科: 数理科学和化学

项目作者: 云宇

作者单位: 北京大学

项目金额: 15万元

中文摘要: 随着科技的迅速发展和人类需求的不断提高,电子器件的小型化、高集成度是电子器件发展的一个必然趋势。当电子器件小到原子尺度时,因达到物理极限而导致许多宏观物理性质丧失。利用电子自旋来代替电荷完成信息的传输和运算,是新一代电子器件的发展趋势,其中铁磁半导体是近年来最受人们关注的热点之一。申请人在前期实验的基础上,本项目计划以铁磁半导体氧化物薄膜为核心,与传统半导体氧化物相结合,系统研究异质结界面的电子自旋输运等科学问题。本项目旨在揭示电子自旋与其他自由度的内在耦合机制,探索界面效应引起的新奇的物理效应,具有深刻而广泛的学术意义和应用价值。

中文关键词: 自旋调控;自旋轨道耦合;磁电阻效应;近邻效应;自旋弛豫

英文摘要: With the development of science and technology and consistent increase of human needs, the miniaturization and high integration of electronic devices have become an inevitable trend of the development of electronic devices. As the scale of electronic devices reduce to the atomic scale, physical limits can result in losses of many macroscopic physical properties.The use of spin degree freedom instead of charge for information storage and computing is the trend of the development of a new generation of electronic devices, and ferromagnetic semiconductor is one of the biggest concerns in recent years. Based on previous research experience and experimental results achieved by the applicant, this proposal plan to base on the ferromagnetic semiconductor oxide,combining with conventional semiconductors, to systematically study the spin transport and other scientific problems in the heterojunction interface. The project aims to investigate the interaction of the spin degree freedom with other degrees of freedom, explore the novel physical effect caused by interfacial effect. The successful completion of this project will have a significant impact on the both scientific and technical community.

英文关键词: spin state manipulation;spin-orbit coupling;magnetoresistance effect;proximity effect;spin relaxation

成为VIP会员查看完整内容
0

相关内容

【AI与工业】2022最新发布《工业物联网AI框架》59页PDF
专知会员服务
141+阅读 · 2022年3月30日
深度神经网络 FPGA 设计进展、实现与展望
专知会员服务
56+阅读 · 2022年3月26日
专知会员服务
39+阅读 · 2021年9月7日
专知会员服务
143+阅读 · 2021年6月10日
2021年全球量子信息发展报告, 32页pdf
专知会员服务
78+阅读 · 2021年5月14日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
20+阅读 · 2021年3月9日
微软发布量子计算最新成果,证实拓扑量子比特的物理机理
微软研究院AI头条
0+阅读 · 2022年3月18日
我的信号是由核辐射传输的,金属屏蔽都挡不住
机器之心
0+阅读 · 2021年11月24日
【数字孪生】数字孪生标准体系探究
产业智能官
47+阅读 · 2019年11月27日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
38+阅读 · 2019年4月12日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
32+阅读 · 2018年7月14日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Verified Compilation of Quantum Oracles
Arxiv
0+阅读 · 2022年4月20日
Transparent Shape from Single Polarization Images
Arxiv
0+阅读 · 2022年4月19日
AliCoCo: Alibaba E-commerce Cognitive Concept Net
Arxiv
13+阅读 · 2020年3月30日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
小贴士
相关VIP内容
【AI与工业】2022最新发布《工业物联网AI框架》59页PDF
专知会员服务
141+阅读 · 2022年3月30日
深度神经网络 FPGA 设计进展、实现与展望
专知会员服务
56+阅读 · 2022年3月26日
专知会员服务
39+阅读 · 2021年9月7日
专知会员服务
143+阅读 · 2021年6月10日
2021年全球量子信息发展报告, 32页pdf
专知会员服务
78+阅读 · 2021年5月14日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
20+阅读 · 2021年3月9日
相关资讯
微软发布量子计算最新成果,证实拓扑量子比特的物理机理
微软研究院AI头条
0+阅读 · 2022年3月18日
我的信号是由核辐射传输的,金属屏蔽都挡不住
机器之心
0+阅读 · 2021年11月24日
【数字孪生】数字孪生标准体系探究
产业智能官
47+阅读 · 2019年11月27日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
38+阅读 · 2019年4月12日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
32+阅读 · 2018年7月14日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
微信扫码咨询专知VIP会员