项目名称: 基于晶体界面增强谐波的可调谐紫外激光的研究

项目编号: No.61505189

项目类型: 青年科学基金项目

立项/批准年度: 2016

项目学科: 无线电电子学、电信技术

项目作者: 任怀瑾

作者单位: 中国工程物理研究院应用电子学研究所

项目金额: 21万元

中文摘要: 紫外激光技术是激光技术发展的前沿方向。本课题旨在对可调谐窄线宽的紫外激光产生的新途径进行探索性研究。晶体界面上增强的非线性效应可以实现许多新颖的非线性光学过程,其在可调谐性等方面具有独特优势,同时也是腔内非线性效应研究的物理基础。本课题提出适用于紫外波段的表面反射型位相匹配机制,设计独特的离散型完全位相匹配微腔结构,以实现可调谐高效率紫外激光输出。不同于传统的双折射位相匹配方案,该方案利用全新的类反常色散位相匹配方式和结构设计,不存在传统倍频晶体在紫外波段频率转换中难以解决的走离角度大,调谐范围小等问题。通过本课题研究,不但可以深化对紫外光表面非线性过程中新原理、新机制的认识,也对基于腔结构的高效紫外光产生研究具有重要意义。

中文关键词: 表面增强非线性;非线性切伦科夫辐射;紫外;可调谐激光;位相匹配

英文摘要: Ultraviolet (UV) laser is a new and cutting-edge research field in laser technology. The primary objectives of this project is to explore new ways to generate tunable narrow-linewidth ultraviolet laser. Based on the enhanced nonlinear effects at crystal interface, there are many novel nonlinear optical processes, which have unique advantages in generating widely tunable laser, and also are the research foundation of the cavity nonlinear processes. Here we propose a new phase matching mechanism based on total internal reflection, and design a unique micro-cavity structure satisfying completely discrete phase matching, in order to achieve high efficiency tunable UV laser output. This project has strong innovative. Unlike conventional birefringent phase matching scheme, this method overcomes the problems of large walk-off angle and small wavelength tuning range, which is difficult to resolve in the UV band frequency conversion. Through this project, we can not only deepen the acknowledgement to the new principles and mechanism of ultraviolet nonlinear optical frequency conversion process on crystal surface, but also promote the design concepts of micro-cavity structure.

英文关键词: enhanced surface nonlinearity;nonlinear Cherenkov radiation;ultraviolet;tunable laser;phase matching

成为VIP会员查看完整内容
0

相关内容

军事知识图谱构建技术
专知会员服务
126+阅读 · 2022年4月8日
【NeurIPS 2021】 基于置信度校正的可信图神经网络
专知会员服务
20+阅读 · 2021年12月26日
专知会员服务
55+阅读 · 2021年10月4日
专知会员服务
19+阅读 · 2021年10月3日
专知会员服务
31+阅读 · 2021年9月27日
专知会员服务
19+阅读 · 2021年9月14日
专知会员服务
29+阅读 · 2021年8月16日
专知会员服务
31+阅读 · 2021年2月17日
基于深度学习的手语识别综述
专知会员服务
46+阅读 · 2020年5月18日
Science:量子计算机成功创造时间晶体
学术头条
0+阅读 · 2021年11月20日
小芯片大安全:数字隔离器的前世今生
中国科学院自动化研究所
0+阅读 · 2021年3月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
57+阅读 · 2021年5月3日
Arxiv
10+阅读 · 2020年11月26日
Deep Face Recognition: A Survey
Arxiv
18+阅读 · 2019年2月12日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
Arxiv
136+阅读 · 2018年10月8日
小贴士
相关VIP内容
军事知识图谱构建技术
专知会员服务
126+阅读 · 2022年4月8日
【NeurIPS 2021】 基于置信度校正的可信图神经网络
专知会员服务
20+阅读 · 2021年12月26日
专知会员服务
55+阅读 · 2021年10月4日
专知会员服务
19+阅读 · 2021年10月3日
专知会员服务
31+阅读 · 2021年9月27日
专知会员服务
19+阅读 · 2021年9月14日
专知会员服务
29+阅读 · 2021年8月16日
专知会员服务
31+阅读 · 2021年2月17日
基于深度学习的手语识别综述
专知会员服务
46+阅读 · 2020年5月18日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
相关论文
Arxiv
57+阅读 · 2021年5月3日
Arxiv
10+阅读 · 2020年11月26日
Deep Face Recognition: A Survey
Arxiv
18+阅读 · 2019年2月12日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
Arxiv
136+阅读 · 2018年10月8日
微信扫码咨询专知VIP会员