摘要: 数据库自然语言接口(natural language interface to database, NLIDB)能够凭借自然语言描述实现数据库查询操作,是促进用户无障碍地与数据库交互的重要工具.因为NLIDB具有较高的应用价值,近年来一直受到学术与商业领域的关注.目前成熟的NLIDB系统大部分基于经典自然语言处理方法,即通过指定的规则实现自然语言查询到结构化查询的转化.但是基于规则的方法仍然存在拓展性不强的缺陷.深度学习方法具有分布式表示和深层次抽象表示等优势,能深入挖掘自然语言中潜在的语义特征.因此近年来在NLIDB中,引入深度学习技术成为了热门的研究方向.针对基于深度学习的NLIDB研究进展进行总结:首先以解码方法为依据,将现有成果归纳为4种类型分别进行分析;然后汇总了7种模型中常用的辅助方法;最后根据目前尚待解决的问题,提出未来仍需关注的研究方向.
https://crad.ict.ac.cn/CN/10.7544/issn1000-1239.2021.20200209