项目名称: ZnO量子阱微腔激子极化激元激光器件的制备及特性研究

项目编号: No.61205037

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 信息四处

项目作者: 宿世臣

作者单位: 华南师范大学

项目金额: 28万元

中文摘要: 激子极化激元是半导体及其微腔结构中激子和光子相互作用形成的准粒子,它具有半光-半物质特性,是典型的玻色子。与传统的激光器相比,激子极化激元的微腔激光器具有极低的受激发射阈值。ZnO宽带半导体材料具有较大的激子束缚能和振子强度,更有利于在室温下实现激子极化激元激光。本项目拟利用氮化物介质膜的分布式布拉格反射镜(DBR)-ZnO/ZnMgO量子阱(QW)-介质膜DBR的三明治结构来构成微腔器件。通过时域有限差分法(FDTD)模拟并优化微腔结构。实现光学模式与ZnO量子阱中的激子产生高效的激子-光子耦合,进而有望在该结构中观察到基于玻色-爱因斯坦凝聚机理的极低阈值激子极化激元激光。根据理论模拟的结构参数,制备极化激元器件;研究量子阱微腔中的极化激元模式及能谱特征;激子极化激元的能级反交叉行为和器件结构对极化激元中拉比劈裂的影响;通过进一步优化器件结构,实现在室温下的ZnO量子阱激子极化激元激光。

中文关键词: 氧化锌;阈值;激光;极化激元;

英文摘要: Exciton-polariton is bosonic quasi-particle arising from the strong exciton-photon coupling in a microcavity of semiconductor. It has the property of half light and half matter. Polariton laser has the advantage of low stimulated emission threshold as compared with the traditional solid state laser. ZnO is a wide band semiconductor having with large exciton binding energy and oscillator strength and is thus a potential candidate for realizing room temperature polariton laser. In this project, microcavity device with the sandwich structure of (nitride-based-DBR)-(ZnO/ZnMgO QW)-(dielectric-DBR) is to be fabricated. The parameters of the microcavity structures will be optimized through the Finite difference time domain (FDTD) theoretical modeling . Based on the Bose-Einstein condensation theory, low threshold polariton laser can be realized by the coupling of the single exciton and photon. The project proposes to: (1) fabricate the microcavity polariton device and characterize its spectrum character; (2) study the physics of polariton in the microcavity; (3) investigate the energy anti-crossing and Rabi splitting; (4) optimize the device structure and realize the ZnO polariton laser at room temperature.

英文关键词: ZnO;threshold;Laser;polariton;

成为VIP会员查看完整内容
0

相关内容

【牛津大学】多级蒙特卡洛方法,70页pdf
专知会员服务
58+阅读 · 2022年2月3日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
18+阅读 · 2020年12月23日
专知会员服务
14+阅读 · 2020年12月12日
【字节跳动-李航】一种按序列进行对话状态跟踪的方法
专知会员服务
29+阅读 · 2020年11月25日
专知会员服务
49+阅读 · 2020年6月14日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
【速览】IJCV 2021| 基于贝叶斯学习的紧凑1比特卷积神经网络(BONN)
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
A Sheaf-Theoretic Construction of Shape Space
Arxiv
0+阅读 · 2022年4月19日
Arxiv
25+阅读 · 2022年1月3日
Arxiv
37+阅读 · 2021年2月10日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
小贴士
相关资讯
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员