项目名称: 聚合物光子晶体-金属微纳复合结构的发光增强效应与传感研究

项目编号: No.51503229

项目类型: 青年科学基金项目

立项/批准年度: 2016

项目学科: 一般工业技术

项目作者: 洪炜

作者单位: 中山大学

项目金额: 21万元

中文摘要: 光子晶体与金属纳米粒子的设计与合成为设计新型超敏光学传感器提供了巨大的潜力。基于在聚合物三维光子晶体中实现金属纳米结构的调控,针对三维光子晶体-金属微纳结构复合体系中荧光分子的发光增强行为,本项目拟展开三维光子晶体-金属微纳结构复合体系的结构调控及应用研究。通过调控聚合物三维光子晶体-金属微纳米复合体系中光子晶体阵列结构、金属纳米单元结构和表面特性,研究复合体系中光子晶体慢光子效应与纳米金属表面等离共振的协同效应,并结合荧光寿命分析以及模拟计算,揭示复合结构内荧光探针的吸收增强与发射增强特性。本项目的研究工作不仅有助于加深对纳米尺度下激子、等离激元、声子、以及光子等基本量子之间的耦合和转化机制的认识,也为光子晶体与等离共振新效应在荧光发光与显示、光学传感、提高光电器件效率等方面的应用提供重要指导信息。

中文关键词: 光子晶体;金属微纳结构;表面等离共振;发光增强;传感器

英文摘要: The synthesis and design of photonic crystals and metal nanoparticles provide tremendous potentials for constructing novel ultra-sensitive optical sensors. In this project, we aim at the regulation of three-dimensional plasmonic-polymer photonic crystals composite structure and its application in luminescence enhancement and fluorescent sensing. The synergistic effects of slow photons in polymer photonic crystals and surface plasmonic resonance on metal nanoparticles will be study through systematic regulation of the photonic crystal structures and the metal nano-structures. The absorption enhancement of fluorescence probe and emission enhancement in the composite structures will be characterized experimentally and theoretically through fluorescence lifetime analysis and computational simulation. This project not only helps understand the light-matter interaction in the nanoscale via the coupling and conversion between the exciton, plamon, phonon and photon, but also provides important basis for designing highly efficient optical sensors, fluorescent display devices as well as photovoltaic devices.

英文关键词: Photonic Crystals;Metal Micro-nano Structure;Surface Plasmon Resonance;Luminescence Enhancement;Sensors

成为VIP会员查看完整内容
0

相关内容

《6G总体白皮书》未来移动通信论坛
专知会员服务
40+阅读 · 2022年4月15日
Nat. Mach. Intell. | 分子表征的几何深度学习
专知会员服务
25+阅读 · 2021年12月26日
中国AI+材料科学产业应用研究报告,41页pdf
专知会员服务
57+阅读 · 2021年12月6日
专知会员服务
43+阅读 · 2021年9月7日
2021年全球量子信息发展报告, 32页pdf
专知会员服务
79+阅读 · 2021年5月14日
专知会员服务
33+阅读 · 2021年5月7日
专知会员服务
29+阅读 · 2021年2月26日
我的信号是由核辐射传输的,金属屏蔽都挡不住
机器之心
0+阅读 · 2021年11月24日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Salient Objects in Clutter
Arxiv
0+阅读 · 2022年4月18日
Arxiv
11+阅读 · 2021年3月25日
Arxiv
26+阅读 · 2018年8月19日
小贴士
相关VIP内容
《6G总体白皮书》未来移动通信论坛
专知会员服务
40+阅读 · 2022年4月15日
Nat. Mach. Intell. | 分子表征的几何深度学习
专知会员服务
25+阅读 · 2021年12月26日
中国AI+材料科学产业应用研究报告,41页pdf
专知会员服务
57+阅读 · 2021年12月6日
专知会员服务
43+阅读 · 2021年9月7日
2021年全球量子信息发展报告, 32页pdf
专知会员服务
79+阅读 · 2021年5月14日
专知会员服务
33+阅读 · 2021年5月7日
专知会员服务
29+阅读 · 2021年2月26日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员