项目名称: 基于三维R树的大规模点云数据管理和自适应可视化方法
项目编号: No.41261086
项目类型: 地区科学基金项目
立项/批准年度: 2013
项目学科: 天文学、地球科学
项目作者: 龚俊
作者单位: 江西师范大学
项目金额: 48万元
中文摘要: 随着多平台(车载、机载、舰载)激光扫描系统和多基线数字摄影测量网格系统的日益普及,大规模点云数据的高效管理与自适应可视化成为关键瓶颈问题之一。立足于点云的不规则离散分布特点和三维R树良好的适应性,本申请提出基于三维R树的大规模点云数据高效管理和自适应可视化方法,主要研究内容包括:1)动静结合的多细节层次三维R树生成方法;2)基于R树的点云数据简化方法;3)基于R树平衡结构的多细节层次点云数据组织方法;4)大规模点云自适应可视化方法;5)原型系统开发和应用实验。本项目的研究旨在为大范围三维点云模型的普及应用提供有效的理论和方法支持。
中文关键词: 点云;三维R树;数据管理;时空数据;
英文摘要: With the increasing popularization of mobile laser scanning systems and multi-ray photogrammetry systems, efficient management and adaptive visualization of large-scale point cloud data becomes one of key bottlenecks. Taking into account the irregular distribution of point cloud and the good adaptability of 3D R-Tree, this study proposes related researches on large-scale point cloud data management and adaptive visualization, which include: 1) 3d R-tree generation method concerning levels of detail(LoD), which integrates dynamic and static mechanisms; 2) point cloud simplification method based on R-Tree; 3) LoD point cloud data organization method based on R-Tree balanced structure; 4) adaptive visualization method for large-scale point cloud; 5) prototype system development and experiments. This proposal aims at providing theoretical and methodological support for ubiquitous applications of large-scale 3d point cloud models.
英文关键词: point cloud;3D R-Tree;data management;spatio-temporal data;