项目名称: 纳米设备中非线性矩阵方程数值解研究

项目编号: No.11301170

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 数理科学和化学

项目作者: 余波

作者单位: 湖南工业大学

项目金额: 22万元

中文摘要: 在纳米设备建模理论中,纳米科学家经常用非均衡格林函数来对量子状态的局部密度进行描述并对如何从数值上求出这样的格林函数抱有极大的兴趣。从理论上来说,这一格林函数已被证明为某一类非线性矩阵方程的解,然而从数值上对如何求解这一类非线性方程的研究才刚刚起步。本项目将从迭代方法和直接方法两个方面对格林函数的数值计算进行深入研究。研究内容包括:从最小化加权系数不动点方法Fréchet导数的谱半径出发设计有效的不动点迭代格式;直接从格林函数对应的无限块三对角矩阵入手设计循环约化型算法;通过纳米设备中非线性方程特殊结构将迭代矩阵的实部与虚部分开,采用相关的正定化技巧设计能够保证迭代矩阵具有正定虚部的牛顿型迭代格式;结合不变子空间表示理论分析保结构直接算法的稳定性。预期获得的理论和算法成果不但有助于纳米设备建模中格林函数数值计算方法的完善,还将对其他相关交叉学科的发展起到极大的推动作用。

中文关键词: 纳米设备;非线性矩阵方程;大规模问题;临界状态;迭代方法

英文摘要: In the modeling of nanoscale devices, nano scientists usually make use of the non-equilibrium Green's function to describe the local density of quantum state and are of great interests to obtain such a function numerically. Although the Green's function has been shown in theory to be a solution of a class of nonlinear matrix equations, the research on how to compute it from numerics is still a fresh research subject. This proposal focuses on the computation of the non-equilibrium Green's function by using the iterative methods and the direct methods. The main research contents are comprised of the following topics: design of the efficient fixed-point iterative schemes via minimizing the spectral radius of the Fréchet derivative in a class of weighted fixed-point methods; construction of the cyclic reduction algorithm from the infinite block tridiagonal matrix corresponded to the Green's function; design of the Newton-type method that can preserve positive definite imaginary part in iterative matrix sequence; analysis of the numerical stability of the structure-preserving direct algorithm by the representation theory on the invariant subspace. The derived research results are expected not only to contribute to the completeness of the computation of the Green's function both in theory and algorithm aspects, but al

英文关键词: nano devices;nonlinear matrix equation;large-scale problems;critical case;iterative methods

成为VIP会员查看完整内容
0

相关内容

专知会员服务
38+阅读 · 2021年8月31日
专知会员服务
21+阅读 · 2021年8月24日
专知会员服务
215+阅读 · 2021年8月2日
【开放书】《矩阵流形优化算法》,241页pdf
专知会员服务
94+阅读 · 2021年7月3日
如何学好数学?这有一份2021《数学学习路线图》请看下
最新《非凸优化理论》进展书册,79页pdf
专知会员服务
109+阅读 · 2020年12月18日
《常微分方程》笔记,419页pdf
专知会员服务
73+阅读 · 2020年8月2日
【ICLR2020】图神经网络与图像处理,微分方程,27页ppt
专知会员服务
48+阅读 · 2020年6月6日
神经网络的基础数学,95页pdf
专知
27+阅读 · 2022年1月23日
SquarePlus:可能是运算最简单的ReLU光滑近似
PaperWeekly
0+阅读 · 2022年1月20日
复数神经网络及其 PyTorch 实现
极市平台
5+阅读 · 2022年1月17日
穿戴设备这场腕上争雄,谁能走到最后?
ZEALER订阅号
0+阅读 · 2021年12月5日
用狄拉克函数来构造非光滑函数的光滑近似
PaperWeekly
0+阅读 · 2021年10月23日
神经网络常微分方程 (Neural ODEs) 解析
AI科技评论
41+阅读 · 2019年8月9日
GAN的数学原理
算法与数学之美
14+阅读 · 2017年9月2日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月20日
Convex-Concave Min-Max Stackelberg Games
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月18日
小贴士
相关VIP内容
专知会员服务
38+阅读 · 2021年8月31日
专知会员服务
21+阅读 · 2021年8月24日
专知会员服务
215+阅读 · 2021年8月2日
【开放书】《矩阵流形优化算法》,241页pdf
专知会员服务
94+阅读 · 2021年7月3日
如何学好数学?这有一份2021《数学学习路线图》请看下
最新《非凸优化理论》进展书册,79页pdf
专知会员服务
109+阅读 · 2020年12月18日
《常微分方程》笔记,419页pdf
专知会员服务
73+阅读 · 2020年8月2日
【ICLR2020】图神经网络与图像处理,微分方程,27页ppt
专知会员服务
48+阅读 · 2020年6月6日
相关资讯
神经网络的基础数学,95页pdf
专知
27+阅读 · 2022年1月23日
SquarePlus:可能是运算最简单的ReLU光滑近似
PaperWeekly
0+阅读 · 2022年1月20日
复数神经网络及其 PyTorch 实现
极市平台
5+阅读 · 2022年1月17日
穿戴设备这场腕上争雄,谁能走到最后?
ZEALER订阅号
0+阅读 · 2021年12月5日
用狄拉克函数来构造非光滑函数的光滑近似
PaperWeekly
0+阅读 · 2021年10月23日
神经网络常微分方程 (Neural ODEs) 解析
AI科技评论
41+阅读 · 2019年8月9日
GAN的数学原理
算法与数学之美
14+阅读 · 2017年9月2日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员