项目名称: 并行子空间学习方法及其大规模图像识别应用研究

项目编号: No.61272273

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 自动化技术、计算机技术

项目作者: 荆晓远

作者单位: 武汉大学

项目金额: 82万元

中文摘要: 子空间学习是一种有效的图像特征提取和识别技术。在该技术的实际应用中,如何识别大规模的图像样本集是一个难点。为了降低大规模图像识别中子空间学习方法的计算代价、提高识别效果,本项目提出了并行子空间学习新方法:(1)首先构造并行子空间学习框架,即把原始样本集随机划分成多个子集,根据并行计算环境中各节点的计算能力相等或者不等的情况,设计了等分和不等分数据划分策略,然后使用图嵌入表示方法给出学习框架;(2)根据框架,提出有监督的并行线性鉴别分析方法,即分别计算每个子集的线性鉴别特征,选择Fisher鉴别值大的特征用于分类。(3)根据框架,提出无监督的并行局部保留映射方法,即分别计算每个子集的局部保留映射特征,选择Laplacian值小的特征用于分类。人脸识别和掌纹识别是子空间学习技术应用比较多的领域。本项目将通过构造大规模的人脸图像库、掌纹图像库来验证所提出的方法。

中文关键词: 子空间学习;图像特征提取;新方法;;

英文摘要: Subspace learning is an effective image feature extraction and recognition technique. However, in its real-world applications, how to recognize the large-scale image sample set is a difficult issue. In order to reduce the computational time and improve the recognition performance of subspace learning technique under the situation of large-scale image recognition, we propose the parallel subspace learning approaches: (1) First, we develop a parallel subspace learning framework, which divides the sample set into several subsets by designing two random data division strategies that are Equal Data Division (EDD) and Unequal Data Division (UDD). These two strategies correspond to equal and unequal computational abilities of nodes under parallel computing environment. The graph embedding method is employed to provide a general formulation for the developed framework; (2) Under this framework, we propose a supervised parallel linear discriminant analysis approach, which computes linear discriminant features of each subset and selects features with the largest Fisher scores for classification; (3) Under this framework, we propose an unsupervised parallel locality preserving projection approach, which computes locality preserving projection features of each subset and selects features with the smallest Laplacian scores f

英文关键词: Subspace learning;Image feature extraction;New methods;;

成为VIP会员查看完整内容
2

相关内容

基于深度学习的图像目标检测算法综述
专知会员服务
98+阅读 · 2022年4月15日
「大规模图神经网络系统」最新2022综述:从算法到系统
专知会员服务
115+阅读 · 2022年1月14日
AAAI 2022 | 面向图数据的对抗鲁棒性研究
专知会员服务
21+阅读 · 2022年1月4日
专知会员服务
36+阅读 · 2021年8月27日
专知会员服务
29+阅读 · 2020年12月16日
最新《深度学习人脸识别》综述论文,
专知会员服务
68+阅读 · 2020年8月10日
深度学习目标检测方法综述
专知会员服务
276+阅读 · 2020年8月1日
基于改进卷积神经网络的短文本分类模型
专知会员服务
26+阅读 · 2020年7月22日
基于深度学习的图像目标检测算法综述
专知
2+阅读 · 2022年4月16日
对比学习在NLP和多模态领域的应用
RUC AI Box
2+阅读 · 2022年2月25日
超图学习综述: 算法分类与应用分析
专知
0+阅读 · 2022年2月1日
图神经网络综述:模型与应用
PaperWeekly
197+阅读 · 2018年12月26日
Meta-Learning 元学习:学会快速学习
专知
24+阅读 · 2018年12月8日
【学界】基于条件深度卷积生成对抗网络的图像识别方法
GAN生成式对抗网络
16+阅读 · 2018年7月26日
迁移学习在深度学习中的应用
专知
23+阅读 · 2017年12月24日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月14日
Arxiv
10+阅读 · 2021年2月18日
Arxiv
136+阅读 · 2018年10月8日
小贴士
相关VIP内容
基于深度学习的图像目标检测算法综述
专知会员服务
98+阅读 · 2022年4月15日
「大规模图神经网络系统」最新2022综述:从算法到系统
专知会员服务
115+阅读 · 2022年1月14日
AAAI 2022 | 面向图数据的对抗鲁棒性研究
专知会员服务
21+阅读 · 2022年1月4日
专知会员服务
36+阅读 · 2021年8月27日
专知会员服务
29+阅读 · 2020年12月16日
最新《深度学习人脸识别》综述论文,
专知会员服务
68+阅读 · 2020年8月10日
深度学习目标检测方法综述
专知会员服务
276+阅读 · 2020年8月1日
基于改进卷积神经网络的短文本分类模型
专知会员服务
26+阅读 · 2020年7月22日
相关资讯
基于深度学习的图像目标检测算法综述
专知
2+阅读 · 2022年4月16日
对比学习在NLP和多模态领域的应用
RUC AI Box
2+阅读 · 2022年2月25日
超图学习综述: 算法分类与应用分析
专知
0+阅读 · 2022年2月1日
图神经网络综述:模型与应用
PaperWeekly
197+阅读 · 2018年12月26日
Meta-Learning 元学习:学会快速学习
专知
24+阅读 · 2018年12月8日
【学界】基于条件深度卷积生成对抗网络的图像识别方法
GAN生成式对抗网络
16+阅读 · 2018年7月26日
迁移学习在深度学习中的应用
专知
23+阅读 · 2017年12月24日
相关基金
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员