显著性目标检测旨在对图像中最显著的对象进行检测和分割,是计算机视觉任务中重要的预处理步骤之一,且在信息检索、公共安全等领域均有广泛的应用.本文对近期基于深度学习的显著性目标检测模型进行了系统综述,从检测粒度的角度出发,综述了将深度学习引入显著性目标检测领域之后的研究成果.首先,从三个方面对显著性目标检测方法进行了论述:稀疏检测方法,密集检测方法以及弱监督学习下的显著性目标检测方法.然后,简要介绍了用于显著性目标检测研究的主流数据集和常用性能评价指标,并对各类主流模型在三个使用最广泛的数据集上进行了性能比较分析.最后,本文分析了显著性目标检测领域目前存在的问题,并对今后可能的研究趋势进行了展望.