项目名称: 局部感知型多机器人系统动态跟随问题研究

项目编号: No.60805038

项目类型: 青年科学基金项目

立项/批准年度: 2009

项目学科: 金属学与金属工艺

项目作者: 曹志强

作者单位: 中国科学院自动化研究所

项目金额: 20万元

中文摘要: 多机器人系统通过多个机器人间的协调,实现对资源、目标的合理配置,具有巨大潜在的应用价值。受人类可以在无准确定位信息情况下,依靠感知高质量完成交互的启发,本项目以多机器人系统动态跟随这一典型任务为研究对象,开展局部感知型(局部感知和局部交互为主,辅以尽量少的通讯信息)多机器人系统的研究,充分发挥机器人的自主性,具有独特的学术价值和重要的现实意义。在感知与局部环境识别、感兴趣目标运动状态的预测推理、智能运动控制与死锁消解、协调涌现机理、局部交互、动态跟随建模与控制等理论方法与关键技术方面深入开展研究,借助多传感器环境感知、智能控制方法提高获取环境特征的准确性以及环境适应能力;基于相对坐标系进行决策以应对移动机构滑动带来的误差累积;强化基于观察的意图分析,降低系统对通讯的依赖性;通过局部交互的协调方法增强系统的扩展性,为多机器人系统在军事、救灾、反恐、安保等场合的应用提供必要的理论和技术基础。

中文关键词: 多机器人系统;局部感知;动态跟随;协调涌现;局部交互

英文摘要: By coordinating multiple robots, multi-robot system may deploy the resources and goals reasonably and it has great potential applications. Enlightened by human high-quality sensing based interactions without precise localization, based on typical multi-robot dynamic tracking task, this research mainly focuses on local sensing based multi-robot system where local sensing and local interaction play the dominant role with minimum communication. The robot autonomy is emphasized, which is significant in reality with a particular academic value. The key problems include perception and local environment recognition, motion prediction and reasoning on interested goals, intelligent motion control and deadlock resolution, coordination emerge mechanism, local interaction, dynamic tracking modeling and control. By multi-sensor sensing and intelligent control, the environmental features' acquisition and environmental adaptability are improved; the accumulation errors due to wheels slippage may be eliminated by using the relative coordinate system for decision-making; by strengthening observation-based intention analysis, the dependence on communication is reduced; the system expansibility is enhanced by local interaction based coordination. These researches provide some necessary supports for multi-robot system applied to military, rescue, anti-terrorism and safeguard etc.

英文关键词: Multi-robot system; Local sensing; Dynamic tracking; Coordination emerge; Local interaction

成为VIP会员查看完整内容
1

相关内容

【AI+军事】附PPT 《前瞻性分析:获得决策优势的方法》
专知会员服务
90+阅读 · 2022年4月17日
【ETH、Stanford】基于博弈论的运动规划,Tutorial ICRA '21
专知会员服务
55+阅读 · 2022年3月7日
专知会员服务
42+阅读 · 2021年9月15日
专知会员服务
97+阅读 · 2021年6月23日
专知会员服务
51+阅读 · 2021年5月30日
专知会员服务
133+阅读 · 2021年2月17日
【CIKM2020】学习表示解决可解释推荐系统
专知会员服务
47+阅读 · 2020年9月6日
【综述】自动驾驶领域中的强化学习,附18页论文下载
专知会员服务
172+阅读 · 2020年2月8日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
综述 | 激光与视觉融合SLAM
计算机视觉life
18+阅读 · 2020年10月8日
【泡泡图灵智库】协同视觉-惯性SLAM
泡泡机器人SLAM
29+阅读 · 2019年9月6日
【泡泡一分钟】DS-SLAM: 动态环境下的语义视觉SLAM
泡泡机器人SLAM
23+阅读 · 2019年1月18日
【泡泡一分钟】动态环境下稳健的单目SLAM
泡泡机器人SLAM
13+阅读 · 2018年3月22日
独家 | 光流与行为识别的结合研究
AI科技评论
12+阅读 · 2017年12月29日
李克强:智能车辆运动控制研究综述
厚势
21+阅读 · 2017年10月17日
国家自然科学基金
11+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Building Odia Shallow Parser
Arxiv
0+阅读 · 2022年4月19日
Arxiv
24+阅读 · 2021年6月25日
Arxiv
10+阅读 · 2020年11月26日
Arxiv
24+阅读 · 2018年10月24日
小贴士
相关VIP内容
【AI+军事】附PPT 《前瞻性分析:获得决策优势的方法》
专知会员服务
90+阅读 · 2022年4月17日
【ETH、Stanford】基于博弈论的运动规划,Tutorial ICRA '21
专知会员服务
55+阅读 · 2022年3月7日
专知会员服务
42+阅读 · 2021年9月15日
专知会员服务
97+阅读 · 2021年6月23日
专知会员服务
51+阅读 · 2021年5月30日
专知会员服务
133+阅读 · 2021年2月17日
【CIKM2020】学习表示解决可解释推荐系统
专知会员服务
47+阅读 · 2020年9月6日
【综述】自动驾驶领域中的强化学习,附18页论文下载
专知会员服务
172+阅读 · 2020年2月8日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
相关资讯
综述 | 激光与视觉融合SLAM
计算机视觉life
18+阅读 · 2020年10月8日
【泡泡图灵智库】协同视觉-惯性SLAM
泡泡机器人SLAM
29+阅读 · 2019年9月6日
【泡泡一分钟】DS-SLAM: 动态环境下的语义视觉SLAM
泡泡机器人SLAM
23+阅读 · 2019年1月18日
【泡泡一分钟】动态环境下稳健的单目SLAM
泡泡机器人SLAM
13+阅读 · 2018年3月22日
独家 | 光流与行为识别的结合研究
AI科技评论
12+阅读 · 2017年12月29日
李克强:智能车辆运动控制研究综述
厚势
21+阅读 · 2017年10月17日
相关基金
国家自然科学基金
11+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员