项目名称: 基于随机Barbalat引理的随机非线性系统分析与综合
项目编号: No.61304073
项目类型: 青年科学基金项目
立项/批准年度: 2014
项目学科: 自动化技术、计算机技术
项目作者: 於鑫
作者单位: 江苏大学
项目金额: 24万元
中文摘要: Barbalat引理是确定性系统一个重要的稳定性分析工具,其优点是克服了Lyapunov方法的某些不足,不借助Lyapunov函数也能分析系统的收敛性。目前,随机非线性控制系统的分析和综合主要基于Lyapunov方法,缺乏类似的Barbalat引理方法。本项目基于随机Barbalat引理,研究随机非线性控制系统的稳定性与反馈控制。主要内容:把在确定性控制系统中有广泛应用的Barbalat引理推广到随机情形,研究随机Barbalat引理;利用随机Barbalat引理,不借助Lyapunov函数,研究随机非线性系统解的渐近收敛性,完善随机非线性控制系统的稳定性理论;以随机Barbalat引理作为随机稳定性的分析工具,结合Nussbaum增益函数和积分反推技术,研究具有未知控制方向的随机非线性系统的反馈控制问题,包括状态反馈和输出反馈控制器的设计,以及利用这些控制方案解决实际控制问题。
中文关键词: 随机Barbalat引理;随机稳定性;不确定非线性系统;非完整系统;反馈控制
英文摘要: Barbalat lemma is an important analyzing tool of stability of deterministic systems, and its advantage is that it overcome some shortage of Lyapunov method and can analyze the convergence of systems without the aid of Lyapunov function. In the current research, the analysis and synthesis of stochastic nonlinear systems are mainly based on the Lyapunov method, and lack of the Barbalat lemma method as in deterministic system. This project studies the stability and feedback control of stochastic nonlinear control systems based on stochastic Barbalat lemma. The main contents are: We extend the Barbalat lemma which is frequently-used in deterministic control systems into stochastic case, and study the stochastic Barbalat lemma; Without the aid of Lyapunov function, we study the asymptotic convergence of the solution of stochastic nonlinear systems by the use of stochastic Barbalat lemma, and improve the stability theorey of stochastic nonlinear control systems; Taking the stochastic Barbalat lemma as the analyzing tool of stochastic stability, and combining the technique of Nussbaum gain function and integrator backstepping, we give the research on the problems of feedback control of stochastic nonlinear systems with unknown control directions, including the design of state feedback and output feedback controller, a
英文关键词: stochastic Barbalat lemma;stochastic stability;uncertain nonlinear systems;nonholonomic systems;feedback control