项目名称: 基于主动减振技术的惯性稳定平台角振动误差分析与减振方法研究

项目编号: No.11202010

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 数理科学和化学

项目作者: 李明

作者单位: 北京航空航天大学

项目金额: 28万元

中文摘要: 惯性稳定平台是航空遥感对地观测系统的核心器件之一,能为摄像载荷提供稳定的工作平台和位置姿态基准,其性能的好坏直接决定航空遥感对地观测的精度。本项目针对环境扰动引起惯性稳定平台角振动而导致平台性能下降的问题,采用理论和试验相结合的方法,分析环境扰动引起的稳定平台角运动,揭示平台结构性能变化与环境扰动等内、外因素引起的平台角振动误差机理,建立准确的角振动误差模型;研究基于主动减振技术的惯性稳定平台角振动的减振方法,优化设计作动装置参数,提出一种振动主动控制方法,实现在环境扰动不确知条件下平台稳态特性的提高和减振带宽的拓展;提出一种角振动阻尼效率的评判方法,解决惯性稳定平台角振动的主动减振效果的评估问题;分析平台结构和执行机构的典型非线性因素对平台角振动减振效果的影响,优化调整减振方法。最后进行综合环境验证试验研究,验证上述方法的有效性和可行性,为提高惯性稳定平台的环境适应性提供技术支撑。

中文关键词: 惯性稳定平台;角振动;主动减振技术;稳态特性;

英文摘要: Inertially stabilized platform ,which can provide a stable working platform and the attitude reference for the camera load, is the core device of airborne remote sensing earth observation system. Its performance directly decides the system's observation accuracy. This project targets the problem of performance decline dued by inertially stabilized platform angle vibration, which is related to environmental perturbations. Combined theory analysis and experimental method , analyzed the stable platform angular motion induced by environment disturbance , revealed the mechanisms of platform structural performance changes and platform angle vibration error, constructed the accurate angular vibration error model; studied active shock absorption method of the platform angle vibration, Optimized the parameters of mechanism, proposed an active vibration control method, achieved improvement performance of system steady characteristics and damping bandwidth under uncertainty environmental perturbations; Proposed an evaluation method of the platform angle vibration damping efficiency, which can solve the problem of inertially stabilized platform angle vibration; Analyzed the likely non-linear factors of the system structure and executive bodies, which can affect platform angle vibration damping, then optimized the vibra

英文关键词: Inertially stabilized platform;Angle vibration;Active vibration technology;Steady state characteristics;

成为VIP会员查看完整内容
0

相关内容

【CVPR2022】多机器人协同主动建图算法
专知会员服务
46+阅读 · 2022年4月3日
专知会员服务
27+阅读 · 2021年9月6日
专知会员服务
29+阅读 · 2021年7月25日
专知会员服务
15+阅读 · 2021年6月6日
专知会员服务
25+阅读 · 2021年4月2日
图像分割方法综述
专知会员服务
52+阅读 · 2020年11月22日
基于深度学习的多标签生成研究进展
专知会员服务
140+阅读 · 2020年4月25日
【CVPR2020】MSG-GAN:用于稳定图像合成的多尺度梯度GAN
专知会员服务
26+阅读 · 2020年4月6日
2022 千元档主动降噪耳机横评来了!
ZEALER订阅号
0+阅读 · 2022年4月6日
自动驾驶高精度定位如何在复杂环境进行
智能交通技术
18+阅读 · 2019年9月27日
计算机视觉方向简介 | 视觉惯性里程计(VIO)
计算机视觉life
64+阅读 · 2019年6月16日
自动驾驶车载激光雷达技术现状分析
智能交通技术
16+阅读 · 2019年4月9日
【工业智能】风机齿轮箱故障诊断 — 基于振动信号
Maplab:研究视觉惯性建图和定位的开源框架
泡泡机器人SLAM
16+阅读 · 2018年4月4日
李克强:智能车辆运动控制研究综述
厚势
20+阅读 · 2017年10月17日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
1+阅读 · 2022年4月19日
Directional Graph Networks
Arxiv
27+阅读 · 2020年12月10日
Arxiv
23+阅读 · 2020年9月16日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
小贴士
相关VIP内容
【CVPR2022】多机器人协同主动建图算法
专知会员服务
46+阅读 · 2022年4月3日
专知会员服务
27+阅读 · 2021年9月6日
专知会员服务
29+阅读 · 2021年7月25日
专知会员服务
15+阅读 · 2021年6月6日
专知会员服务
25+阅读 · 2021年4月2日
图像分割方法综述
专知会员服务
52+阅读 · 2020年11月22日
基于深度学习的多标签生成研究进展
专知会员服务
140+阅读 · 2020年4月25日
【CVPR2020】MSG-GAN:用于稳定图像合成的多尺度梯度GAN
专知会员服务
26+阅读 · 2020年4月6日
相关资讯
2022 千元档主动降噪耳机横评来了!
ZEALER订阅号
0+阅读 · 2022年4月6日
自动驾驶高精度定位如何在复杂环境进行
智能交通技术
18+阅读 · 2019年9月27日
计算机视觉方向简介 | 视觉惯性里程计(VIO)
计算机视觉life
64+阅读 · 2019年6月16日
自动驾驶车载激光雷达技术现状分析
智能交通技术
16+阅读 · 2019年4月9日
【工业智能】风机齿轮箱故障诊断 — 基于振动信号
Maplab:研究视觉惯性建图和定位的开源框架
泡泡机器人SLAM
16+阅读 · 2018年4月4日
李克强:智能车辆运动控制研究综述
厚势
20+阅读 · 2017年10月17日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
相关论文
Arxiv
0+阅读 · 2022年4月20日
Arxiv
1+阅读 · 2022年4月19日
Directional Graph Networks
Arxiv
27+阅读 · 2020年12月10日
Arxiv
23+阅读 · 2020年9月16日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
微信扫码咨询专知VIP会员