项目名称: 遥感图像上颜色增强旋转不变霍夫森林目标检测方法的并行计算研究

项目编号: No.41201450

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 地理学

项目作者: 雷震

作者单位: 武汉大学

项目金额: 25万元

中文摘要: 颜色增强旋转不变霍夫森林方法(CRIHF)适合于遥感图像目标检测,具有稳健、有效、通用性好的特点,然而此方法还存在检测速度慢,以及由此带来的高耗时特性较难研究、较难在工程应用中推广的问题。随着半导体技术发展到接近原子尺度,计算硬件需采用并行结构继续发展。并行计算因其优良的可扩展性以及充分利用并行计算硬件的能力可以大幅提高科学计算速度,正在成为科学计算的主流趋势。本项目顺应这一潮流,研究CRIHF方法并行计算的内在模型和外在应用,主要研究内容包括:(1)CRIHF方法在多种并行架构下的并行计算模型及其工程实现,(2)以卫星数据处理和无人机在航目标检测为应用场景验证方法,并总结重要参数对准确度、速度的影响规律。(3)在并行计算的支持下研究方法的高耗时特性扩展。通过本项目的研究,可以解决CRIHF方法的上述难题,扩展方法的应用范围,为快速遥感图像目标检测提供新方法。

中文关键词: 遥感数据处理;随机森林;并行化;;

英文摘要: Color-enhanced Rotation-Invariant Hough Forest (CRIHF) is a stable, efficient and versatile object detection method for remotely sensed imagery. However it is often forbiddingly slow to be successfully applied in many practical applications. Meanwhile, with the development of semi-conductor technology down to the atomic level, further development of computing hardware has required the use of parallel infra-structure. This new trend of development has often rendered algorithmic design a bottleneck as most complex algorithms are traditionally designed for the sequential computer model. Historically, parallel computation has been used to significantly improve the speed of certain scientific computation problems such as matrix computation and scientific simulations due to their structural regularity and excellent scalability. However, designing efficient algorithms for more complex problems to better utilize parallel hardware has been always a key research question in scientific computation and it is becoming important due to the wide-spread use of parallel hardware. Following such tendency, this project proposes to study the method and application of combining parallel computation and the CRIHF method. The main research contents include: (1) Design of a parallel computation model of the CRIHF method and its impleme

英文关键词: remote sensing;random forest;parallalization;;

成为VIP会员查看完整内容
0

相关内容

随机森林 指的是利用多棵树对样本进行训练并预测的一种分类器。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
基于深度学习的图像目标检测算法综述
专知会员服务
98+阅读 · 2022年4月15日
专知会员服务
89+阅读 · 2021年8月8日
【CMU博士论文】开放世界目标检测与跟踪,168页pdf
专知会员服务
59+阅读 · 2021年6月14日
基于深度学习的视频目标检测综述
专知会员服务
83+阅读 · 2021年5月19日
专知会员服务
124+阅读 · 2021年4月29日
专知会员服务
72+阅读 · 2021年3月23日
专知会员服务
62+阅读 · 2021年3月6日
小目标检测技术研究综述
专知会员服务
122+阅读 · 2020年12月7日
图像分割方法综述
专知会员服务
56+阅读 · 2020年11月22日
深度学习目标检测方法综述
专知会员服务
276+阅读 · 2020年8月1日
基于深度学习的图像目标检测算法综述
专知
2+阅读 · 2022年4月16日
基于OpenCV的图像阴影去除
极市平台
1+阅读 · 2022年2月27日
目标检测之殇—小目标检测
极市平台
5+阅读 · 2021年11月3日
YOLO 实现吸烟行为监测
极市平台
1+阅读 · 2021年10月30日
光学遥感图像目标检测算法综述
专知
8+阅读 · 2021年3月23日
低清视频也能快速转高清:超分辨率算法TecoGAN
极市平台
14+阅读 · 2019年5月4日
目标检测实用中可以改进的方向
极市平台
11+阅读 · 2019年5月4日
红外弱小目标处理研究获进展
中科院之声
17+阅读 · 2017年11月19日
基于深度学习的肿瘤图像分割研究取得进展
中科院之声
17+阅读 · 2017年9月17日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
11+阅读 · 2019年4月15日
小贴士
相关VIP内容
基于深度学习的图像目标检测算法综述
专知会员服务
98+阅读 · 2022年4月15日
专知会员服务
89+阅读 · 2021年8月8日
【CMU博士论文】开放世界目标检测与跟踪,168页pdf
专知会员服务
59+阅读 · 2021年6月14日
基于深度学习的视频目标检测综述
专知会员服务
83+阅读 · 2021年5月19日
专知会员服务
124+阅读 · 2021年4月29日
专知会员服务
72+阅读 · 2021年3月23日
专知会员服务
62+阅读 · 2021年3月6日
小目标检测技术研究综述
专知会员服务
122+阅读 · 2020年12月7日
图像分割方法综述
专知会员服务
56+阅读 · 2020年11月22日
深度学习目标检测方法综述
专知会员服务
276+阅读 · 2020年8月1日
相关资讯
基于深度学习的图像目标检测算法综述
专知
2+阅读 · 2022年4月16日
基于OpenCV的图像阴影去除
极市平台
1+阅读 · 2022年2月27日
目标检测之殇—小目标检测
极市平台
5+阅读 · 2021年11月3日
YOLO 实现吸烟行为监测
极市平台
1+阅读 · 2021年10月30日
光学遥感图像目标检测算法综述
专知
8+阅读 · 2021年3月23日
低清视频也能快速转高清:超分辨率算法TecoGAN
极市平台
14+阅读 · 2019年5月4日
目标检测实用中可以改进的方向
极市平台
11+阅读 · 2019年5月4日
红外弱小目标处理研究获进展
中科院之声
17+阅读 · 2017年11月19日
基于深度学习的肿瘤图像分割研究取得进展
中科院之声
17+阅读 · 2017年9月17日
相关基金
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员