项目名称: 若干类超前BSDE,带随机违约时间的BSDE,及相关领域
项目编号: No.11301274
项目类型: 青年科学基金项目
立项/批准年度: 2014
项目学科: 数理科学和化学
项目作者: 许晓明
作者单位: 南京师范大学
项目金额: 22万元
中文摘要: 倒向随机微分方程(BSDE)理论在金融数学及偏微分方程(PDE)等领域有着广泛的应用。作为对BSDE理论的完善和拓展,本项目拟讨论一般的超前BSDE、超前倒向重随机微分方程(BDSDE)、耦合的正-倒向随机泛函微分方程及带随机违约时间的BSDE,研究其解的属性及比较定理等性质,进而探讨其在随机控制/对策及PDE等领域中的应用。我们希望,通过该项目的研究,能够得到一系列国际前沿、国内领先的应用基础理论成果,为正、倒向随机微分方程在金融中的研究及应用提供强有力的工具。
中文关键词: 超前BSDE;比较定理;带随机违约时间的BSDE;随机泛函微分方程;黎曼流形
英文摘要: Backward stochastic differential equation (BSDE) is widely applied in financial mathematics and the PDE field. In order to enrich the frame of the BSDE theory, we will be concerned with the generalized anticipated BSDE, the anticipated backward doubly stochastic differential equation (BDSDE), the coupled forward-backward stochastic functional differential equation and the BSDE with random default time. For these equations, we will study the property of their solutions, the comparison theorem and so on, then discuss the related applications in the stochastic control/game problem and PDE area. We hope that through this program, we can obtain a series of results at the leading edge of scientific research, and provide powerful tools for the application of forward, backward stochastic differential euqaionts in finance.
英文关键词: anticipated BSDE;comparison theorem;BSDE with random default time;stochastic functional differential equation;Riemannian manifold