项目名称: H-半变分不等式及非凸约束问题
项目编号: No.11426071
项目类型: 专项基金项目
立项/批准年度: 2015
项目学科: 数理科学和化学
项目作者: 彭自嘉
作者单位: 广西民族大学
项目金额: 3万元
中文摘要: 本项目主要结合H-半变分不等式理论研究具有非凸能量泛函或非凸约束的双重非线性问题。基于非光滑分析理论,它们可以转化为非线性发展型H-半变分不等式。研究内容分为2部分:1. 研究非凸能量泛函导出的椭圆-抛物型H-半变分不等式初值和和周期问题解的存在性和收敛性;2. 通过非凸星形集上距离函数的Clarke广义梯度,构造非凸约束型双重非线性问题的H-半变分不等式逼近,然后建立非凸约束问题解的存在性和收敛性定理。该课题属于H-半变分不等式和双重非线性问题的科学前沿,不仅对发展非凸问题的研究方法具有重要的理论意义,而且在相变热传导、多空介质渗流等工程科技问题中具有重要应用价值。
中文关键词: H-半变分不等式;非凸约束;Clarke广义梯度;星形集;
英文摘要: Based on hemivariational inequality theory, this project deals with doubly nonlinear problems with nonconvex energy functionals or nonconvex constraints. By means of the theory of nonsmooth analysis, they could be transformed into nonlinear evolutionary hemivariational inequalities. The content is divided into two parts: the first part is concerned with the existence and convergence of solutions to the elliptic-parabolic hemivariational inequalities generated by nonconvex energy functionals. By Clarke's generalized gradient of the distance function defined on the star-shaped sets, in the second part, we construct the approximated hemivariational inequalities of the nonconvex probems and study the existence and convergence of their solutions. As the scientific frontier of hemivariational inequalities and doubly nonlinear equations, this project is not only of great theoretic importance in developing new methods to nonconvex problems, but also have vital application value in engineering and scientific problems such as heat transfer with phase change and the porous media seepage.
英文关键词: Hemivariational inequality;nonconvex constraint;Clrake generalized gradient;star-shaped set;