项目名称: 声学声子库场影响下的半导体量子点-微腔系统控制单光子输运的理论研究
项目编号: No.11504104
项目类型: 青年科学基金项目
立项/批准年度: 2016
项目学科: 数理科学和化学
项目作者: 张玉青
作者单位: 湖南科技大学
项目金额: 20万元
中文摘要: 一维波导中单光子输运的量子操控是量子计算、量子信息处理等领域的关键问题之一。目前大多数的研究工作是利用原子-腔系统控制一维波导中的单光子输运。对于原子-腔系统,原子的冷却、囚禁、操控、多个系统的级联以及可扩展的量子信息处理都存在着一定的困难。而半导体量子点-微腔系统具有体积小、易集成、可扩容、易操控的优势,可极大地降低实际应用中对实验技术的要求。由于半导体量子点-微腔系统的性质与声学声子库场密切相关,所以本项目中我们基于半导体量子点-微腔系统控制一维波导中的单光子输运,采用主方程方法研究声学声子库场的马尔可夫和短时非马尔可夫效应的影响,分析在不同库场温度和量子点-腔失谐等可控参数条件下,纯退相过程和腔场的增强作用对单光子输运的调控作用,从而寻找控制库场作用的最佳条件。研究结果将为利用半导体量子点-微腔系统有效地控制一维波导中的单光子输运提供可靠的理论依据。
中文关键词: 声学声子;单光子输运;量子点;微腔
英文摘要: Quantum manipulation for single-photon transport in one-dimensional waveguide is one of the key problems in quantum computation and quantum information processing. At present, most works are based on the atom-cavity system to control the single-photon transport in one-dimensional waveguide. However, there are many difficulties using the atom-cavity system, such as the cooling、trapping and manipulation of the atoms, the cascading of the multiple atom-cavity systems, and the extendible quantum information processing. By contrast, the semiconductor quantum dot-microcavity system has many advantages, such as small size, easy integration, easy extension, and easy manipulation. Therefore, controlling single-photon transport in one-dimensional waveguide with semiconductor quantum dot-microcavity system can greatly reduce the difficulties of the experiment technique in practical application. However, the behavior of the semiconductor quantum dot-microcavity system is closely related to the acoustic-phonon reservoir. So in this project, we want to study the single-photon transport in one-dimensional waveguide controlled by semiconductor quantum dot-microcavity system. We adopt the master equation method to analyze the influence of the Markov and the short-time non-Markov effects of the acoustic-phonon reservoir, studying the effects of the pure dephasing and the cavity feeding on the single-photon transport for different values of the phonon- reservoir temperature, the quantum dot-cavity detuning and other controllable parameters. Based on the study, we can seek the best condition to control the acoustic- phonon reservoir. Our study will provide theoretical guidance for effective controlling the single-photon transport in one dimensional waveguide with semiconductor quantum dot-microcavity system.
英文关键词: acoustic-phonon;single-photon transport ;quantum dot;microcavity