项目名称: 金属纳米缝-孔复合结构中磁等离极化激元近场光学性质的研究

项目编号: No.10874081

项目类型: 面上项目

立项/批准年度: 2009

项目学科: 建筑科学

项目作者: 刘辉

作者单位: 南京大学

项目金额: 35万元

中文摘要: 磁等离极化激元(magnetic plasmon polariton: MPP)在负折射、隐形斗篷材料等新兴科学前沿中的应用而受到人们普遍关注,而近年来可见光及红外波段的MPP共振是这个领域的热点问题,但直到目前有关MPP的讨论仍局限在远场反射、透射和折射等方面,而有关MPP近场光学性质方面的实验研究仍鲜有报道。在本项目中,我们将首次提出一种新型的金属纳米磁共振结构:缝-孔复合结构(slit-hole resonator: SHR), 实验上利用聚焦离子束技术制备出这种新型微结构材料,并利用近场光学显微镜研究这种材料在可见光及红外波段MPP近场光学效应。根据我们初步的理论计算,与普通的金属表面等离激元(SPP)相比,MPP具有更高的Q值,更加显著的局域近场光学效应。我们希望通过对SHR结构的研究,发现MPP材料中特殊的近场光学性质,为发展新型的MPP纳米光子器件提供理论和应用基础。

中文关键词: 超材料;金属表面等离激元;负折射

英文摘要: Magnetic plasmon polariton ( MPP) has attracted a wide interest due its important applications in negative refraction, cloaking materials and other new fronteries of science. Recently, magnetic plasmon resonance at infrared and visible range is one of hot topics in this field. However, most work about MPP up to now is limited to its far-field properties, such as reflection, transmission and refraction. The report about near field property of MPP is still very few. In this project, we will firstly propose a new kind of metallic magnetic resonance nanostructure: slit-hole resonator (SHR). Focus Ion Beam (FIB) technique will be used to fabricate such a novel structure. Near field optical microscopy will be employed to study the near field property of MPP at the infrared and visible range. According to our preliminary theoretical calculations, compared with surface plasmon polariton (SPP), MPP possesses larger Q value and more remarkable localized near field optical effect. Through the study of SHR, we hope to explore the special near field optical properties of MPP and provide theory and application basis for the development of novel MPP nanophotonic devises.

英文关键词: surface plasmon; negative refraction

成为VIP会员查看完整内容
0

相关内容

【AI+军事】附PPT 《前瞻性分析:获得决策优势的方法》
专知会员服务
90+阅读 · 2022年4月17日
【博士论文】多视光场光线空间几何模型研究
专知会员服务
22+阅读 · 2021年12月6日
NeurIPS 2021 | 微观特征混合进行宏观时间序列预测
专知会员服务
40+阅读 · 2021年11月12日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
31+阅读 · 2021年5月7日
【2021新书】流形几何结构,322页pdf
专知会员服务
53+阅读 · 2021年2月22日
一份循环神经网络RNNs简明教程,37页ppt
专知会员服务
172+阅读 · 2020年5月6日
基于深度学习的多标签生成研究进展
专知会员服务
141+阅读 · 2020年4月25日
我的信号是由核辐射传输的,金属屏蔽都挡不住
机器之心
0+阅读 · 2021年11月24日
10000个科学难题 • 制造科学卷
科学出版社
13+阅读 · 2018年11月29日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
34+阅读 · 2018年7月14日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Spiking Graph Convolutional Networks
Arxiv
0+阅读 · 2022年5月5日
Arxiv
0+阅读 · 2022年5月3日
Arxiv
1+阅读 · 2022年5月3日
Arxiv
58+阅读 · 2021年11月15日
Arxiv
16+阅读 · 2021年7月18日
Arxiv
14+阅读 · 2021年6月30日
Arxiv
35+阅读 · 2021年1月27日
AutoML: A Survey of the State-of-the-Art
Arxiv
69+阅读 · 2019年8月14日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
小贴士
相关主题
相关VIP内容
【AI+军事】附PPT 《前瞻性分析:获得决策优势的方法》
专知会员服务
90+阅读 · 2022年4月17日
【博士论文】多视光场光线空间几何模型研究
专知会员服务
22+阅读 · 2021年12月6日
NeurIPS 2021 | 微观特征混合进行宏观时间序列预测
专知会员服务
40+阅读 · 2021年11月12日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
31+阅读 · 2021年5月7日
【2021新书】流形几何结构,322页pdf
专知会员服务
53+阅读 · 2021年2月22日
一份循环神经网络RNNs简明教程,37页ppt
专知会员服务
172+阅读 · 2020年5月6日
基于深度学习的多标签生成研究进展
专知会员服务
141+阅读 · 2020年4月25日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
相关论文
Spiking Graph Convolutional Networks
Arxiv
0+阅读 · 2022年5月5日
Arxiv
0+阅读 · 2022年5月3日
Arxiv
1+阅读 · 2022年5月3日
Arxiv
58+阅读 · 2021年11月15日
Arxiv
16+阅读 · 2021年7月18日
Arxiv
14+阅读 · 2021年6月30日
Arxiv
35+阅读 · 2021年1月27日
AutoML: A Survey of the State-of-the-Art
Arxiv
69+阅读 · 2019年8月14日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
微信扫码咨询专知VIP会员