项目名称: 受CPG机理启发的两足机器人适应性行走控制方法研究和实验验证

项目编号: No.61203344

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 自动化学科

项目作者: 刘成菊

作者单位: 同济大学

项目金额: 24万元

中文摘要: 机器人行走的环境适应性问题是机器人现场应用的瓶颈,本项目基于CPG机理来解决两足机器人行走控制及环境适应性问题。为了克服传统CPG关节空间控制方法的复杂性和局限性,本研究基于CPG丰富动态特性,提出在线优化机器人工作空间轨迹的控制思路。其中,机器人行走过程中体现节律特性的特征量通过CPG来实现。参考生物体的反射行为,利用传感反馈信息激发CPG以产生具有环境适应性的工作空间轨迹。利用基于多目标进化算法的交互式启发算法来整定系统参数。本课题主要研究内容聚焦到如何利用CPG产生特征量信号、如何利用感知信息来调制工作空间轨迹及如何利用进化计算优化整个动态系统等方面。本课题以解决环境适应性行走为目标,研究新的仿生机理模拟方法;探索控制策略在系统实现面临实时性、计算效率等关键问题时的解决方案;针对实体机器人设计典型验证实验。这对突破现场机器人真实应用的瓶颈和促进服务机器人的开发应用都具有重要的意义。

中文关键词: 两足机器人;环境适应性;行走控制;中枢模式发生器;平衡机制

英文摘要: Poor environmental adaptability of locomotion control is a bottleneck problem of the application of legged robots in real world. This project develops locomotion control methods based on central pattern generator (CPG) mechanism to solve this problem. To overcome the complexities and limitations of the present joint-space CPG-inspired control methods, we are exploring a novel task-space control strategy, where adaptive workspace trajectories will be realized in real-time through CPGs. Due to the copious dynamic features of the CPGs, the generated workspace trajectories can be adjusted by the sensory information, which mimics the reflexes and responses of animals. Parameters of CPGs and the feedback loop will be evolved by an interactive heuristic algorithm which based on multi-objective evolutionary algorithm. The main research contents of this project will focus on how to generate the characteristics of biped robot using CPGs, how to adjuste the workspace trajectoies using sensory signals, as well as how to optimize the whole dynamic system using evolutionary algorithms.Aiming for improving the walking adaptability of biped robots,we investigate a novel CPG mechanism to realize adaptive locomotion for biped robots in unstructured environments. We explore solutions to some practical problems, such as real-time q

英文关键词: biped robot;environmental adapbility;walking control;central pattern generator;active balance

成为VIP会员查看完整内容
0

相关内容

信息物理融合系统 (CPS)研究综述
专知会员服务
46+阅读 · 2022年3月14日
清华大学:从单体仿生到群体智能
专知会员服务
72+阅读 · 2022年2月9日
【AAAI2022】一种基于状态扰动的鲁棒强化学习算法
专知会员服务
35+阅读 · 2022年1月31日
Kyoto大学Toshiyuki:快速复杂控制系统的实时优化,133页ppt
专知会员服务
33+阅读 · 2021年9月14日
专知会员服务
28+阅读 · 2021年5月24日
专知会员服务
136+阅读 · 2021年2月17日
人机对抗智能技术
专知会员服务
203+阅读 · 2020年5月3日
前所未有:用AI控制核聚变,DeepMind再登Nature
学术头条
0+阅读 · 2022年2月17日
自动化所团队提出视触觉传感技术新路线!让机器人拥有更敏锐触觉
中国科学院自动化研究所
3+阅读 · 2021年9月10日
使用强化学习训练机械臂完成人类任务
AI研习社
13+阅读 · 2019年3月23日
【紫冬声音】基于人体骨架的行为识别
中国自动化学会
16+阅读 · 2019年1月30日
【泡泡一分钟】点密度适应性点云配准
泡泡机器人SLAM
16+阅读 · 2018年5月28日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
7+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
16+阅读 · 2021年7月18日
Arxiv
19+阅读 · 2021年6月15日
Arxiv
57+阅读 · 2021年5月3日
Arxiv
10+阅读 · 2020年11月26日
Arxiv
11+阅读 · 2018年4月25日
小贴士
相关VIP内容
信息物理融合系统 (CPS)研究综述
专知会员服务
46+阅读 · 2022年3月14日
清华大学:从单体仿生到群体智能
专知会员服务
72+阅读 · 2022年2月9日
【AAAI2022】一种基于状态扰动的鲁棒强化学习算法
专知会员服务
35+阅读 · 2022年1月31日
Kyoto大学Toshiyuki:快速复杂控制系统的实时优化,133页ppt
专知会员服务
33+阅读 · 2021年9月14日
专知会员服务
28+阅读 · 2021年5月24日
专知会员服务
136+阅读 · 2021年2月17日
人机对抗智能技术
专知会员服务
203+阅读 · 2020年5月3日
相关资讯
前所未有:用AI控制核聚变,DeepMind再登Nature
学术头条
0+阅读 · 2022年2月17日
自动化所团队提出视触觉传感技术新路线!让机器人拥有更敏锐触觉
中国科学院自动化研究所
3+阅读 · 2021年9月10日
使用强化学习训练机械臂完成人类任务
AI研习社
13+阅读 · 2019年3月23日
【紫冬声音】基于人体骨架的行为识别
中国自动化学会
16+阅读 · 2019年1月30日
【泡泡一分钟】点密度适应性点云配准
泡泡机器人SLAM
16+阅读 · 2018年5月28日
相关基金
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
7+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
相关论文
微信扫码咨询专知VIP会员