项目名称: 基于认知学习的智能机器人控制系统关键问题的研究

项目编号: No.61473052

项目类型: 面上项目

立项/批准年度: 2015

项目学科: 自动化学科

项目作者: 李军

作者单位: 重庆大学

项目金额: 81万元

中文摘要: 认知机器人研究的是赋予机器人认知学习能力使之能在动态变化的环境下自主实现感知-学习-动作的认知过程。本项目应用认知科学中长短期记忆模型、双向编码机理、视觉注意与激励等机制,对机器人在动态环境下感知数据的特征自组织模型、所需行为从感知到动作的映射与优化、和机器人实时在线自适应自学习控制三个关键问题开展研究。具体地,我们重点研究视觉图像的空间显著特征检测和自组织模式、视觉注意力选择和旋转变换保持机制,非监督-监督-激励集成学习模式下机器人状态-动作映射的自生长自消减多层次神经网络模型,行为控制器参数的实时自适应学习和在线策略梯度Q-学习优化,以及基于机器人实验研究的学习系统稳定性评价方法,最终形成一个感知-学习-动作循环的自主机器人学习系统。本项目旨在揭示机器人的学习控制机理、使之具备学习新行为和优化现有行为的能力,从而提高机器人的认知学习水平、增强学习系统的普适性、和简化控制器的设计。

中文关键词: 智能机器人;认知学习;神经网络控制;感知-动作注意力机制;长短期记忆-双向编码理论

英文摘要: Research in cognitive robotics is concerned with endowing robots with the capability of cognitive learning that enable them to perceive-learn-act in dynamically changing environments. In this proposal three key problems, namely the feature self-organizing of the sensory dada of the dynamically changing environments, the perception-action mapping and optimizing for the behaviors required, and the adaptive online learning control of robots in real time, are addressed based on the notion of long and short term memory, dual coding, and visual attention and reward in cognitive science. Specifically, we address the self-organizing module, spatial salience detection, attention selection and reward, and the invariance of the mental rotation transformation of the visual image from low level sensor data; the self-growing and self-pruning hierarchical neural network models in Unsupervised-Supervised-Reinforcement (UL-SL-RL) learning paradigms, the adaptively online tuning and Q-learning to the behavior controller parameters, and the stability analyses in terms of the experimental evaluation on the real robot platforms, finally resulting in a perceive-learn-act cognitive control system for autonomous robots. The ultimate goal of the project proposed is aiming at the learning mechanisms in cognitive robotics that enable robots to learn new behaviors and to tune the existing behaviors to facilitate the dynamically changing environments, consequently increasing the cognitive learning ability of the robots, improving the universality and generalization of the learning system, and simplifying the controller design.

英文关键词: Intelligent Robots;Cognitive Learning;Neural Networks Control;Sensorimotor Attention Mechanism;Long-Short Term Memory and Dual Coding Theory

成为VIP会员查看完整内容
7

相关内容

智能机器人之所以叫智能机器人,这是因为它有相当发达的“大脑”。
【CVPR2022】语言引导与基于视觉的深度度量学习的集成
专知会员服务
15+阅读 · 2022年3月17日
专知会员服务
32+阅读 · 2021年9月14日
专知会员服务
133+阅读 · 2021年2月17日
【2020新书】从Excel中学习数据挖掘,223页pdf
专知会员服务
90+阅读 · 2020年6月28日
用于强化学习的置换不变神经网络
TensorFlow
1+阅读 · 2021年12月28日
知识分享 | 深度学习的学习路径
沈浩老师
19+阅读 · 2019年1月9日
无人机集群对抗研究的关键问题
无人机
56+阅读 · 2018年9月16日
【强化学习】易忽略的强化学习知识之基础知识及MDP
产业智能官
18+阅读 · 2017年12月22日
国家自然科学基金
5+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
4+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
46+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年5月3日
Arxiv
0+阅读 · 2022年4月28日
Arxiv
13+阅读 · 2021年3月3日
Arxiv
27+阅读 · 2020年12月24日
Arxiv
10+阅读 · 2020年11月26日
Object Detection in 20 Years: A Survey
Arxiv
48+阅读 · 2019年5月13日
小贴士
相关基金
国家自然科学基金
5+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
4+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
46+阅读 · 2009年12月31日
相关论文
微信扫码咨询专知VIP会员