项目名称: 基于数据与先验知识融合生化反应过程辨识建模及其参数不确定优化研究

项目编号: No.61473327

项目类型: 面上项目

立项/批准年度: 2015

项目学科: 自动化技术、计算机技术

项目作者: 孙凯彪

作者单位: 大连理工大学

项目金额: 59万元

中文摘要: 鉴于生化反应过程具有参数不确定性、过程非线性、信息不完全性和过程关键参数测量时滞性等特点,本项目拟开展基于数据和先验知识融合生化反应过程辨识模型与不确定优化问题研究。首先,为了刻画生化反应过程重要变量的变化趋势,建立了基于先验机理知识的非构造式参数化模型,并对模型参数进行了辨识。其次,利用人工神经网络模型对机理模型精度进行补偿,建立了基于数据和过程机理的生化反应过程融合模型,用于对反应过程状态变量的精确估计。第三,基于融合模型构建多目标优化问题,并利用改进粒子群优化算法结合序列二次规划算法对其进行求解,确定一组过程的最佳运行条件和操作方案。此外,针对反应过程中存在的不确定性因素进行识别和敏感性分析,选定反应过程主要关键不确定性因素,构建参数不确定条件下的反应过程优化模型,并利用随机优化算法进行求解;第四,根据反应过程所要实现的不同目标,设计切实有效的控制算法,搭建控制平台实现对其控制。

中文关键词: 过程建模;多目标优化;人工神经网络;不确定参数;自适应控制

英文摘要: In view of the characteristcs of parameter uncertainty, nonlinearity, the incompleteness of information and the time delay of the key parameters' measurement in real bioprocess, this project intends to carry out the research on identification model and optimization with parameter uncertainty for the bioprocess driven by the experimental data and priori knowledge. Firstly, to depict the change trend of important variables in bioprocess, the unstructured parameterized model is established based on the mechanism of the bioprocess, and the kinetic parameters are identified by data. And then, the hybrid model is builded up bu using the artifical neural network to compensate the accuracy of mechanism model, which is used to accurate estimates of the state variables in the bioprocess. Thirdly, the multi-objective optimization problem of the bioprocess is presented and solved by a hybrid algorithm by integrating an improved particle swarm optimization with successive quadratic programming, which results in the approximate optimum operating condition and operation scheme of the bioprocess. In addition, in view of the uncertainty factors in the bioprocess, the identification and sensitivity analysis are made to identify the key parameters, and then the optimization model of bioprocess with uncertain parameters is builded up and solved by stochastic optimization algorithm. The last step is to design efficient algorithm, set up control platform to realize the bioprocess control according to the different goals to achieve in the bioprocess.

英文关键词: bioprocess modeling;multi-objective optimization;artificial neural network;uncertain parameter;adaptive control

成为VIP会员查看完整内容
1

相关内容

航空制造知识图谱构建研究综述
专知会员服务
112+阅读 · 2022年4月25日
【AI+军事】附PPT 《北约数据开发计划》
专知会员服务
113+阅读 · 2022年4月17日
专知会员服务
121+阅读 · 2021年7月22日
专知会员服务
97+阅读 · 2021年6月23日
专知会员服务
44+阅读 · 2021年5月24日
专知会员服务
24+阅读 · 2021年4月21日
专知会员服务
84+阅读 · 2020年12月11日
专知会员服务
42+阅读 · 2020年7月29日
大规模时间序列分析框架的研究与实现,计算机学报
专知会员服务
58+阅读 · 2020年7月13日
为什么深度学习是非参数的?
THU数据派
1+阅读 · 2022年3月29日
基于规则的建模方法的可解释性及其发展
专知
4+阅读 · 2021年6月23日
基于深度学习的数据融合方法研究综述
专知
31+阅读 · 2020年12月10日
基于数据的分布式鲁棒优化算法及其应用【附PPT与视频资料】
人工智能前沿讲习班
26+阅读 · 2018年12月13日
R语言时间序列分析
R语言中文社区
12+阅读 · 2018年11月19日
论文 | 基于RNN的在线多目标跟踪
七月在线实验室
31+阅读 · 2017年12月27日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
3+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
AutoML: A Survey of the State-of-the-Art
Arxiv
69+阅读 · 2019年8月14日
小贴士
相关VIP内容
航空制造知识图谱构建研究综述
专知会员服务
112+阅读 · 2022年4月25日
【AI+军事】附PPT 《北约数据开发计划》
专知会员服务
113+阅读 · 2022年4月17日
专知会员服务
121+阅读 · 2021年7月22日
专知会员服务
97+阅读 · 2021年6月23日
专知会员服务
44+阅读 · 2021年5月24日
专知会员服务
24+阅读 · 2021年4月21日
专知会员服务
84+阅读 · 2020年12月11日
专知会员服务
42+阅读 · 2020年7月29日
大规模时间序列分析框架的研究与实现,计算机学报
专知会员服务
58+阅读 · 2020年7月13日
相关资讯
为什么深度学习是非参数的?
THU数据派
1+阅读 · 2022年3月29日
基于规则的建模方法的可解释性及其发展
专知
4+阅读 · 2021年6月23日
基于深度学习的数据融合方法研究综述
专知
31+阅读 · 2020年12月10日
基于数据的分布式鲁棒优化算法及其应用【附PPT与视频资料】
人工智能前沿讲习班
26+阅读 · 2018年12月13日
R语言时间序列分析
R语言中文社区
12+阅读 · 2018年11月19日
论文 | 基于RNN的在线多目标跟踪
七月在线实验室
31+阅读 · 2017年12月27日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
3+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员