Precipitation nowcasting based on radar echo maps is essential in meteorological research. Recently, Convolutional RNNs based methods dominate this field, but they cannot be solved by parallel computation resulting in longer inference time. FCN based methods adopt a multi-frame-to-single-frame inference (MSI) strategy to avoid this problem. They feedback into the model again to predict the next time step to get multi-frame nowcasting results in the prediction phase, which will lead to the accumulation of prediction errors. In addition, precipitation noise is a crucial factor contributing to high prediction errors because of its unpredictability. To address this problem, we propose a novel Multi-frame-to-Multi-frame Inference (MMI) model with Noise Resistance (NR) named MMINR. It avoids error accumulation and resists precipitation noise\'s negative effect in parallel computation. NR contains a Noise Dropout Module (NDM) and a Semantic Restore Module (SRM). NDM deliberately dropout noise simple yet efficient, and SRM supplements semantic information of features to alleviate the problem of semantic information mistakenly lost by NDM. Experimental results demonstrate that MMINR can attain competitive scores compared with other SOTAs. The ablation experiments show that the proposed NDM and SRM can solve the aforementioned problems.


翻译:以雷达回声地图为基础的当前降水预报是气象研究的关键。最近,以革命性RNNs为基础的方法主宰了这个领域,但无法通过平行计算解决,从而导致较长的推论时间较长。基于FCN的方法采用了多框架到单一框架的推论(MSI)战略来避免这一问题。它们向模型反馈,再次预测在预测阶段取得多框架现在的推论结果的下一个步骤,这将导致预测错误的累积。此外,降水噪音是造成高预测错误的关键因素之一,因为它的不可预测性。为了解决这个问题,我们建议采用新的多框架到多框架推论(MMIMI)模型来避免这个问题。它避免错误积累并抵制降水噪音的负效应。NRM包含一个噪音流出模块(NDM)和一个语义性恢复模块(SRM)。NDM故意以简单但有效的方式补充NRM的语义信息,用以缓解NRMM(M)模式,通过SMM(SMA)的竞争性实验来显示SMA(SMA)的测试结果,通过SMA(SMA)的测试结果可以错误地展示SMAD(SD)的SMADRAD(SDR)的测试,通过SMA(SDAD)的测试其他)的测试结果可以显示SMADMD(SDDDDDD)的测试,以其他的测试结果可以显示SDMADMADDADADADMAD) 。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
60+阅读 · 2020年3月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
3+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
60+阅读 · 2020年3月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
3+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员