项目名称: 阻尼波动方程的调和分析方法研究
项目编号: No.11201103
项目类型: 青年科学基金项目
立项/批准年度: 2013
项目学科: 数理科学和化学
项目作者: 张纯洁
作者单位: 杭州电子科技大学
项目金额: 22万元
中文摘要: 本项目的研究对象是阻尼波动方程,此方程较经典波方程更具有实际应用背景,且近十多年来出现了关于此方程的大量理论研究成果,主要涉及解的适定性、爆破性对于此方程人们特别关注的能量随时间的衰减性质等。我们发现目前文献中对阻尼波动方程的研究均采用传统的偏微分方程研究手法,而本项目我们将完全利用调和分析的手段对此方程进行研究。我们将从线性形式的阻尼波动方程解的具体形式出发,先建立解算子的核函数所满足的各种估计式,接着利用这些估计式获得解算子的各种能量估计及时空估计,再利用这些能量估计及时空估计研究在各种非线性项下的非线性阻尼波动方程的解适定性问题以及能量随时间的衰减问题。另外我们还将在其它一些重要的函数空间,如Hardy空间、Triebel-Lizorkin空间及模空间中讨论阻尼波动方程的性质。
中文关键词: 阻尼波动方程;适定性;时空估计;震荡积分;
英文摘要: In this project we will study the damped wave equations which have been widely studied in the past two decades. Previous studies on this function are mainly focused on the well-posedness, blow up and the asymptotic behavior of energy as the time variable goes to infinity. We aim to study this equation by using the methods of harmonic analysis. That is, we shall first study the formal solution to linear damped wave equation which can be written as some basic convolutional operators. Detailed analysis on the kernels of those operators will be performed which then results in the boundedness of those operators. Space-time estimates will also be obtained. Those boundedness and space-time estimates will be the tools to study the nonlinear damped wave equations. Besides, the equations will also be studied in the framework of other important function spaces like Hardy space, Triebel-Lizorkin space and modulation space.
英文关键词: Damped wave equation;Well posedness;Space-time estimate;oscillatory integral;