项目名称: 多站点云自适应配准理论与技术研究
项目编号: No.41304001
项目类型: 青年科学基金项目
立项/批准年度: 2014
项目学科: 天文学、地球科学
项目作者: 杨荣华
作者单位: 重庆大学
项目金额: 25万元
中文摘要: 点云配准是地面三维激光点云数据处理技术中的关键问题之一,本课题从测量平差理论、特征提取理论和点云配准理论入手,通过研究点云数据自身的特性,在整体最小二乘理论基础下,探讨多站点云数据自适应配准技术的理论和方法。具体包括:(1)研究基于整体最小二乘的标靶特征提取算法及其精度评价模型,导出特征提取精度与扫描距离、扫描间隔、光斑大小、入射角等因素的函数关系;(2)研究基于整体最小二乘的多站点云自适应配准模型,导出同名线和面特征的一致性评价方法,建立多类特征标靶点云、多站无标靶点云、多站标靶和无标靶点云的自适应配准模型;(3)研究多站点云配准成果质量评价模型,推导多站点云自适应整体最小二乘配准的精度评价模型。 本课题的研究成果,将解决多站点云数据自适应配准理论与技术中的瓶颈问题,完善整体最小二乘理论和点云配准理论,促进三维激光扫描技术的广泛应用,并为制定相关测量规范和开发商用软件提供理论依据。
中文关键词: 点云配准;特征提取;配准精度;标靶分布;点云评价
英文摘要: Point cloud registration is another key problem in the point cloud data processing technology of terrestrial laser scanning. With the theory of surveying adjustmeng, feature extraction and point cloud registration, the subject discusses the theory and method of the multiview cloud data adaptive registration by studying its own characteristics, which is based on the total least squares theory. Including: (1)Study the total least squares algorithm of targets' feature extraction and its accuracy evaluation model. Export the functional relationship between the accuracy of the feature extraction,scanning distance,scanning interval,spot diameter, incident angle, etc; (2)Study the total least squares algorithm of multiview cloud adaptive registration model. Export the consensus assessment method of correspondence lines feature and correspondence planes feature. At the same time, construct the adaptive registration model of multiview cloud containing some targets which is feature point, feature line or feature face, the adaptive registration model of multiview cloud containing no target, the adaptive registration model of multiview cloud which include some point cloud containing some targets and others containing no target; (3)Study the accuracy evaluation model of multiview cloud registratioin. Export the accuracy eva
英文关键词: Registration;Feature Extraction;Precision of the registration;Targets Geometry Distribution;Point Cloud Evaluatioin