参考:[1] Milletari, F.; Navab, N.; and Ahmadi, S.-A. 2016. V-net: Fully convolutional neural networks for volumetric medical image segmentation. In 3DV, 565–571. IEEE.[2] Shi, W.; Shen, S.; and Liu, Y. 2009. Automatic generation of road network map from massive gps, vehicle trajectories. In ITSC, 1–6. IEEE.[3] Yuan, J.; Zheng, Y.; Zhang, C.; Xie, X.; and Sun, G.-Z. 2010b. An interactive-voting based map matching algorithm. In MDM, 43–52. IEEE Computer Society.[4] Yuan, J.; Zheng, Y.; Zhang, C.; Xie, W.; Xie, X.; Sun, G.; and Huang, Y. 2010a. T-drive: driving directions based on taxi trajectories. In SIGSPATIAL, 99–108. ACM.[5] Biagioni, J., and Eriksson, J. 2012a. Inferring road maps from global positioning system traces: Survey and comparative evaluation. TRANSPORT RES REC 2291(1):61–71.[6] Edelkamp, S., and Schr¨odl, S. 2003. Route planning and map inference with global positioning traces. In Computer science in perspective. Springer. 128–151.[7] Chen, C.; Lu, C.; Huang, Q.; Yang, Q.; Gunopulos, D.; and Guibas, L. 2016. City-scale map creation and updating using gps collections. In SIGKDD, 1465–1474. ACM.[8] Stanojevic, R.; Abbar, S.; Thirumuruganathan, S.; Chawla, S.; Filali, F.; and Aleimat, A. 2018. Robust road map inference through network alignment of trajectories. In ICDM, 135–143. SIAM.[9] Cao, L., and Krumm, J. 2009. From gps traces to a routable road map. In SIGSPATIAL, 3–12. ACM.[10] Biagioni, J., and Eriksson, J. 2012b. Map inference in the face of noise and disparity. In SIGSPATIAL, 79–88. ACM.[11] Long, J.; Shelhamer, E.; and Darrell, T. 2015. Fully convolutional networks for semantic segmentation. In CVPR, 3431–3440.[12] Chaurasia, A., and Culurciello, E. 2017. Linknet: Exploiting encoder representations for efficient semantic segmentation. In VCIP, 1–4. IEEE.[13] Chen, L.-C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; and Yuille, A. L. 2017. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. TPAMI 40(4):834–848.[14] Ronneberger, O.; Fischer, P.; and Brox, T. 2015. U-net: Convolutional networks for biomedical image segmentation. In MICCAI, 234–241. Springer.[15] Zhou, L.; Zhang, C.; and Wu, M. 2018. D-linknet: Linknet with pretrained encoder and dilated convolution for high resolution satellite imagery road extraction. In CVPR Workshops, 182–186.[16] Sun, T.; Di, Z.; Che, P.; Liu, C.; and Wang, Y. 2019. Leveraging crowdsourced gps data for road extraction from aerial imagery. In CVPR, 7509–7518.