SLAM领域牛人、牛实验室、牛研究成果梳理

2018 年 12 月 6 日 计算机视觉life

点击“计算机视觉life”关注,置顶星标更快接收消息!

本文阅读时间约5分钟,文末有惊喜

对于很多小伙伴来说,初入一个领域时最应该了解的当然是这个领域的研究现状啦。只有知道这个领域大家现在正在干什么,才能知道自己应该做什么。关注领域内的大牛以及领域内比较著名的实验室,紧跟大牛的脚步,才能走在科研的最前沿。今天CV_life君就帮各位整理了一些现阶段国内外SLAM的著名实验室,大牛以及研究成果,还会附带大牛们的代表性论文,开源代码,以及常用的数据集网址,如果喜欢的话记得分享给朋友哦~

话不多说,上干货!

SLAM领域的大牛

1.      Andrew Davison

个人主页

http://www.doc.ic.ac.uk/~ajd/index.html.

现任英国帝国理工学院教授,机器视觉组及Dyson机器人实验室主任,英国牛津大学博士,单目摄像头SLAM奠基人(MonoSLAM),近年来在视觉slam领域做了大量研究,著名工作包括MonoSLAM, SLAM++, DTAM等。

代表论文

Real-Time Simultaneous Localisation and Mapping with a Single Camera(ICCV 2013)

下载链接:

http://www.doc.ic.ac.uk/~ajd/Publications/davison_iccv2003.pdf

源代码:

https://github.com/hanmekim/SceneLib2/tree/upgrade

2.      David Murray

个人主页:

http://www.robots.ox.ac.uk/~dwm/.

SLAM视觉宗师,现任英国牛津大学教授,Active Vision Laboratory主任,从1980年至2018年,发表了大量高水平的SLAM论文,也是PTAM作者,Philip Torr, Andrew Davison,Ian Reid的Phd导师。

代表性论文

Parallel Tracking and Mapping for Small AR Workspaces

下载链接:

http://www.robots.ox.ac.uk/~dwm/Publications/klein_murray_ismar2007/klein_murray_ismar2007.pdf

源代码

http://www.robots.ox.ac.uk/~gk/PTAM/

3.      Jakob Engel

个人主页:

https://jakobengel.github.io/#Home

慕尼黑工业大学博士,现任西雅图Oculus Research的研究负责人。年轻有为,是LSD-SLAM和DSO-SLAM的作者,也从事视觉惯导里程计的研究。

代表论文:

Large-Scale Direct Monocular SLAM(IROS 2015)

Direct Sparse Odometry (2017)

下载链接:

https://jakobengel.github.io/pdf/engel14eccv.pdf(LSD-SLAM)

https://jakobengel.github.io/pdf/DSO.pdf(DSO-SLAM)

源代码:

https://github.com/tum-vision/lsd_slam(LSD-SLAM)

https://github.com/JakobEngel/dso(DSO-SLAM)

4.      RaúlMurArtal

个人主页:

http://webdiis.unizar.es/~raulmur/

西班牙人,现任Facebook Reality Labs的研究科学家,大名鼎鼎的ORB-SLAM的作者。

代表论文:

ORB-SLAM: A Versatile and Accurate Monocular SLAM System(2015)

下载链接:

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7219438

源代码:

https://github.com/raulmur/ORB_SLAM2

5.      Christian Kerl

个人主页:

https://vision.in.tum.de/members/kerl

慕尼黑技术大学博士生,DVO的作者,主要研究方向为:使用安装在四旋翼或手持设备上的RGB-D摄像机进行视觉SLAM和3D重建。

代表论文:

Dense Visual SLAM for RGB-D Cameras(IROS 2013)

下载链接:

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.402.5544&rep=rep1&type=pdf

源代码:

https://github.com/tum-vision/dvo_slam

6.      Felix Endres

个人主页:

http://www2.informatik.uni-freiburg.de/~endres/

Albert-Ludwigs-Universität Freiburg的自主智能系统小组的博士生,RGBD-SLAM_V2的作者。主要研究方向为3D感知,主要运用RGB-D SLAM方法。

代表论文:

3D Mapping with an RGB-D Camera(IEEE Transactions on Robotics, 2014)

下载链接:

http://www2.informatik.uni-freiburg.de/~endres/files/publications/endres13tro.pdf

SLAM领域著名实验室


好啦~介绍完几个比较经典的算法以及他们的作者,小编还要给大家推荐几个SLAM的主要研究实验室:

1.     苏黎世联邦理工学院的Autonomous System Lab,该实验室主要方向是创建机器人和智能系统,使其能在复杂环境下自主运行。他们还在tango项目上与谷歌合作,负责视觉惯导的里程计,基于视觉的定位和深度重建算法。

网址:http://www.asl.ethz.ch/

2.     明尼苏达大学的Multiple Autonomous Robotic Systems Laboratory(MARS),其主要研究方向包括:视觉/激光辅助惯性导航系统、手机和可穿戴计算机上的大规模3D定位和映射、多机器人/传感器定位,映射和导航、可重构传感器网络的主动传感、最佳信息选择和融合、移动操作、人机合作等。

网址:http://mars.cs.umn.edu/

3.     慕尼黑工业大学的The Computer Vision Group,主要研究基于图像的3-D重建,光流估计,机器人视觉,视觉SLAM等。

网址:https://vision.in.tum.de/research

4.     香港科技大学的Aerial Robotics Group,主要研究基于无人机的视觉惯导紧耦合算法。代表作品:VINS-Mono,一个单目视觉惯导系统的实时SLAM框架,其代码已经开源在

https://github.com/HKUST-Aerial-Robotics/VINS-Mono

上。做视觉惯导融合的小伙伴们一定不要错过~

网址:http://uav.ust.hk/

5.     浙江大学的CAD&CG国家重点实验室。该实验室在SLAM、AR、三维重建等领域有较大的贡献。其中章国峰教授课题组主攻方向就是视觉SLAM以及三维重构。下面送上章国峰教授的个人主页

http://www.cad.zju.edu.cn/home/gfzhang/

,大家可以在这里找到章国峰教授的研究成果。

网址:

http://www.cad.zju.edu.cn/zhongwen.html

6.     武汉大学的Computer Vision & Remote Sensing Lab,主要方向为计算机视觉,遥感成像。其中的成员博士后吴萌,其主要方向为组合导航、基于SLAM的室内机器人导航系统研发等。附上他的个人主页:

http://cvrs.whu.edu.cn/index.php?m=content&c=index&a=show&catid=17&id=48

网址:http://cvrs.whu.edu.cn

这几个实验室发表了很多SLAM领域的优秀论文,如果小伙伴们对他们的某一个方向感兴趣的话,直接戳进他们的官网,了解他们的项目,阅读他们的论文,我相信你会发现一个精彩的SLAM世界。

SLAM常用数据集

要做好slam,优秀的数据集自然不可或缺的,接下来小编还要为大家介绍几个slam方面常用的数据集:

1.  KITTI 装备4个相机、高精度GPS/IMU和激光雷达,在城市道路采集的数据。

网址:

http://www.cvlibs.net/datasets/kitti/

2.  EuRoC MAV 提供了在微型飞行器(MAV)上收集的视觉惯性数据集。数据集包含立体图像,同步IMU测量以及精确的运动和真值。

网址:

https://projects.asl.ethz.ch/datasets/doku.php?id=kmavvisualinertialdatasets

3.  RGB-D SLAM Dataset and Benchmark 提供包含RGB-D数据和地面实况数据的大型数据集。

网址:

https://vision.in.tum.de/data/datasets/rgbd-dataset

PS: 昨天的文章《CV_life第一波「粉丝互动」福利来啦~》大家在留言区分享很多文献查找、科研神器,非常有用,留言还有机会抽大奖哦,欢迎前往参与!

登录查看更多
12

相关内容

即时定位与地图构建(SLAM或Simultaneouslocalizationandmapping)是这样一种技术:使得机器人和自动驾驶汽车等设备能在未知环境(没有先验知识的前提下)建立地图,或者在已知环境(已给出该地图的先验知识)中能更新地图,并保证这些设备能在同时追踪它们的当前位置。
专知会员服务
129+阅读 · 2020年7月10日
基于视觉的三维重建关键技术研究综述
专知会员服务
160+阅读 · 2020年5月1日
专知会员服务
86+阅读 · 2019年12月13日
基于深度学习的行人重识别研究进展,自动化学报
专知会员服务
38+阅读 · 2019年12月5日
跟踪SLAM前沿动态系列之ICCV2019
泡泡机器人SLAM
7+阅读 · 2019年11月23日
ICRA 2019 论文速览 | 基于Deep Learning 的SLAM
计算机视觉life
41+阅读 · 2019年7月22日
ICRA 2019 论文速览 | 传统SLAM、三维视觉算法进展
计算机视觉life
50+阅读 · 2019年7月16日
OpenVSLAM:日本新开源”全能“视觉SLAM框架
计算机视觉life
13+阅读 · 2019年6月12日
【创新工场AI工程院】机器人实验室,等你SLAM!
泡泡机器人SLAM
3+阅读 · 2019年6月4日
【泡泡读者来稿】VINS代码推导及论文解析(五)
泡泡机器人SLAM
29+阅读 · 2019年3月19日
研究SLAM,对编程的要求有多高?
计算机视觉life
24+阅读 · 2019年2月18日
汇总 | VIO、激光SLAM相关论文分类集锦
计算机视觉life
7+阅读 · 2019年1月28日
【泡泡前沿追踪】跟踪SLAM前沿动态系列之IROS2018
泡泡机器人SLAM
29+阅读 · 2018年10月28日
已删除
Arxiv
32+阅读 · 2020年3月23日
Arxiv
101+阅读 · 2020年3月4日
Structure Aware SLAM using Quadrics and Planes
Arxiv
4+阅读 · 2018年8月13日
Arxiv
29+阅读 · 2018年4月6日
VIP会员
相关资讯
跟踪SLAM前沿动态系列之ICCV2019
泡泡机器人SLAM
7+阅读 · 2019年11月23日
ICRA 2019 论文速览 | 基于Deep Learning 的SLAM
计算机视觉life
41+阅读 · 2019年7月22日
ICRA 2019 论文速览 | 传统SLAM、三维视觉算法进展
计算机视觉life
50+阅读 · 2019年7月16日
OpenVSLAM:日本新开源”全能“视觉SLAM框架
计算机视觉life
13+阅读 · 2019年6月12日
【创新工场AI工程院】机器人实验室,等你SLAM!
泡泡机器人SLAM
3+阅读 · 2019年6月4日
【泡泡读者来稿】VINS代码推导及论文解析(五)
泡泡机器人SLAM
29+阅读 · 2019年3月19日
研究SLAM,对编程的要求有多高?
计算机视觉life
24+阅读 · 2019年2月18日
汇总 | VIO、激光SLAM相关论文分类集锦
计算机视觉life
7+阅读 · 2019年1月28日
【泡泡前沿追踪】跟踪SLAM前沿动态系列之IROS2018
泡泡机器人SLAM
29+阅读 · 2018年10月28日
相关论文
已删除
Arxiv
32+阅读 · 2020年3月23日
Arxiv
101+阅读 · 2020年3月4日
Structure Aware SLAM using Quadrics and Planes
Arxiv
4+阅读 · 2018年8月13日
Arxiv
29+阅读 · 2018年4月6日
Top
微信扫码咨询专知VIP会员