众所周知,分类模型通常都是先得到编码向量,然后接一个 Dense 层预测每个类别的概率,而预测时则是输出概率最大的类别。但大家是否想过这样一种可能:训练好的分类模型可能存在“无法预测的类别”,即不管输入是什么,都不可能预测出某个类别 k,类别 k 永远不可能成为概率最大的那个。
当然,这种情况一般只出现在类别数远远超过编码向量维度的场景,常规的分类问题很少这么极端的。然而,我们知道语言模型本质上也是一个分类模型,它的类别数也就是词表的总大小,往往是远超过向量维度的,那么我们的语言模型是否有“无法预测的词”?(只考虑 Greedy 解码)
ACL 2022 的论文《Low-Rank Softmax Can Have Unargmaxable Classes in Theory but Rarely in Practice》[1] 首先探究了这个问题,正如其标题所言,答案是“理论上存在但实际出现概率很小”。
前面的讨论都是理论上的,那么实际的语言模型出现“无法预测的词”的概率大不大呢?原论文对一些训练好的语言模型和生成模型进行了检验,发现实际上出现的概率很小,比如下表中的机器翻译模型检验结果:
▲ 机器翻译模型的检验结果
其实这不难理解,从前面的讨论中我们知道“无法预测的词”一般只出现在类别数远远大于向量维度的情况,也就是原论文标题中的“Low-Rank”。但由于“维度灾难”的原因,“远远大于”这个概念其实并非我们直观所想的那样,比如对于 2 维空间来说,类别数为 4 就可以称得上“远远大于”,但如果是 200 维空间,那么即便是类别数为 40000 也算不上“远远大于”。常见的语言模型向量维度基本上都有几百维,而词表顶多也就是数十万的级别,因此其实还是算不上“远远大于”,因此出现“无法预测的词”的概率就很小了。
本文向大家介绍了一个没什么实用价值但是颇为有意思的现象:你的语言模型可能存在一些“无法预测的词”,它永远不可能成为概率最大者。
参考文献
[1] https://arxiv.org/abs/2203.06462
[2] https://en.wikipedia.org/wiki/Minimax_theorem
更多阅读
#投 稿 通 道#
让你的文字被更多人看到
如何才能让更多的优质内容以更短路径到达读者群体,缩短读者寻找优质内容的成本呢?答案就是:你不认识的人。
总有一些你不认识的人,知道你想知道的东西。PaperWeekly 或许可以成为一座桥梁,促使不同背景、不同方向的学者和学术灵感相互碰撞,迸发出更多的可能性。
PaperWeekly 鼓励高校实验室或个人,在我们的平台上分享各类优质内容,可以是最新论文解读,也可以是学术热点剖析、科研心得或竞赛经验讲解等。我们的目的只有一个,让知识真正流动起来。
📝 稿件基本要求:
• 文章确系个人原创作品,未曾在公开渠道发表,如为其他平台已发表或待发表的文章,请明确标注
• 稿件建议以 markdown 格式撰写,文中配图以附件形式发送,要求图片清晰,无版权问题
• PaperWeekly 尊重原作者署名权,并将为每篇被采纳的原创首发稿件,提供业内具有竞争力稿酬,具体依据文章阅读量和文章质量阶梯制结算
📬 投稿通道:
• 投稿邮箱:hr@paperweekly.site
• 来稿请备注即时联系方式(微信),以便我们在稿件选用的第一时间联系作者
• 您也可以直接添加小编微信(pwbot02)快速投稿,备注:姓名-投稿
△长按添加PaperWeekly小编
🔍
现在,在「知乎」也能找到我们了
进入知乎首页搜索「PaperWeekly」
点击「关注」订阅我们的专栏吧